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Grafičko oblikovanje

Lucijana Dujić Rastić
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Slika 3.0.1 Graf konstantne funkcije 87

Slika 3.0.2 Graf linearne funkcije 88

Slika 3.0.3 Graf kvadratne funkcije 89

Slika 3.0.4 Graf eksponencijalne funkcije 90

Slika 3.0.5 Graf logaritamske funkcije 91

Slika 3.0.6 Trigonometrijska kružnica 92

Slika 3.0.7 Graf funkcije sinus 93

Slika 3.0.8 Graf funkcije kosinus 93

Slika 3.0.9 Graf funkcije tangens 94

Slika 3.0.10 Graf funkcije kotangens 95

Slika 3.0.11 Graf funkcije arkus sinus 97

Slika 3.0.12 Graf funkcije arkus kosinus 98

Slika 3.0.13 Graf funkcije arkus tangens 99

Slika 3.0.14 Graf funkcije arkus kotangens 99

Slika 3.0.15 Graf funkcije f (x) = 1
2 x− 3 100

Slika 3.0.16 Graf funkcije f (x) = x2 + x− 12 100

Slika 3.0.17 Graf kvadratne funkcije 101

Slika 4.0.1 Okolina točke a 103
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0

U V O D

Udžbenik Matematika za studente arhitekture i dizajna namijenjen je stu-
dentima Studija arhitekture i urbanizma te studentima Studija dizajna
za učenje i polaganje kolegija Matematika te Matematika 1 i 2 na
Arhitektonskom fakultetu Sveučilišta u Zagrebu. Sadržaj je podijeljen
u 6 poglavlja: Vektori, Analitička geometrija, Elementarne funkcije,
Limesi, Derivacije i Integrali. Drugo poglavlje ima i dodatak Povežimo
analitičku i nacrtnu geometriju u kojem su pojedine zadaće riješene
metodama nacrtne geometrije. Dakle, obrad̄eni su standardni sadržaji
koji se predaju na tehničkim fakultetima, ali prilagod̄eni satnici na
Arhitektonskom fakultetu Sveučilišta u Zagrebu te je više stavljen
naglasak na primjenu i vizualizaciju sadržaja, a manje na formalni
matematički rječnik i dokaze. Svako poglavlje započinje motivacijom,
zatim slijedi kratki teorijski uvod te riješeni primjeri i zadatci. Tekst je
popraćen s preko 100 slika napravljenih u digitalnom alatu Geogebri.
U prvom poglavlju uveden je pojam vektora te su definirane operacije
s vektorima i to zbrajanje vektora, množenje realnog broja i vektora te
skalarni, vektorski i mješoviti produkt vektora.
U drugom poglavlju koriste se algebarske metode za rješavanje ge-
ometrijskih problema. Pomoću vektorskog računa izvodi se jednažba
pravca i ravnine te se proučavaju med̄usobni odnosi i položaji pravaca
i ravnina u prostoru. Za svaki zadatak najprije je grafički prikazano
prostorno rješenje, a zatim je dano algebarsko rješenje.
U dodatku drugom poglavlju, pojedine zadaće su riješene i metodama
iz nacrtne geometrije te studenti mogu usporediti i riješiti iste zadaće
na dva načina.
Treće poglavlje posvećeno je osnovnim elementarnim funkcijama. Za
svaku funkciju nacrtan je njen graf te su navedena osnovna svojstva.
Na kraju ovog poglavlja nalaze se kratki zadatci za vježbu.
U četvrtom poglavlju definiran je pojam granične vrijednosti ili limesa
funkcije te su navodena svojstva limesa i pravila za računanje osnovnih
limesa.
U petom poglavlju definiran je pojam derivacije te je preko derivacije
opisano ponašanje funkcije. Ovdje je takod̄er navodeno L’Hospitalovo
pravilo za računanje limesa funkcija.
U zadnjem poglavlju definirani su neodred̄eni i odred̄eni integral te
se uče tehnike računanja istih. Ovdje je naglasak stavljen na računanje
površina ravninskih likova omed̄enih grafovima nekih funkcija te na
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8 uvod

računanje volumena rotacijskih tijela koja nastaju rotacijom grafova
funkcija oko osi x ili y.
Nadamo se da će ovaj udžbenik približiti matematički sadržaj i olak-
šati njegovo razumijevanje studentima navedenih profila te omogućiti
primjenu u geometrijskim i konstrukcijskim kolegijima.
Na kraju, iskreno se zahvaljujemo našim recezenticama izv. prof. dr.
sc. Slavici Ivelić Bradanović, prof. dr. sc. Emi Jurkin i doc. dr. sc. Ivi
Kodrnji na konstruktivnim sugestijama i komentarima koji su doprini-
jeli poboljšanju udžbenika.

Autori



1

V E K T O R I

Definicija 1: Orijentiranu dužinu s krajnjim točkama kod kojih raz-
likujemo početnu i završnu točku zovemo vektor. Početna točka je
početak vektora, a krajnja točka kraj vektora.

Slika 1.0.1: Prikaz vektora

Vektor čiji je početak točka A, a kraj točka B, A 6= B, označavat ćemo
−→
AB. Vektor čiji je početak točka B, a kraj točka A, nazivamo suprotni
vektor vektora

−→
AB i označavamo

−→
BA. Duljina vektora je udaljenost

izmed̄u njegove početne i krajnje točke i to je pozitivan realan broj
kojeg nazivamo modul ili norma vektora i označavamo |−→AB|. Vidimo
da je |−→AB| = |−→BA|.
Smjer vektora je odred̄en pravcem na kojem leži vektor. Pravac p,
odred̄en je točkama A i B i sadrži vektor

−→
AB, pa kažemo da je pravac

p nositelj vektora
−→
AB. Za vektore koji leže na paralelnim pravcima

kažemo da imaju isti smjer ili da su kolinearni (oznaka ||). U suprot-
nom slučaju govorimo o nekolinearnim vektorima.

9
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Slika 1.0.2: Pravac nositelj vektora

Kako bismo potpuno odredili vektor, osim njegove duljine i smjera
moramo poznavati i njegovu orijentaciju. Nacrtajmo pravac p te na
njemu istaknimo 3 točke A, B i C takve da je točka B izmed̄u A i C.
Vektori

−→
AB,
−→
AC i

−→
BC su med̄usobno jednako orijentirani, a vektori

−→
BA

i
−→
BC su med̄usobno suprotno orijentirani.

Slika 1.0.3: Vektori suprotnih orijentacija

Definicija 2: Vektor je odred̄en svojom duljinom, smjerom i orijenta-
cijom, odnosno, kažemo da su dva vektora jednaka ako se podudaraju
po duljini, smjeru i orijentaciji.
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Primjer 1. Vektori
−→
AB i

−→
CD sa slike 1.0.4 imaju isti smjer, ali su suprotno

orijentirani i imaju različite module. Vektori
−→
AD i

−→
BC imaju različit smjer i

orijentaciju, a isti modul.

Slika 1.0.4: Zadani elementi Primjera 1

Kriterij za jednakost vektora
Vektori

−→
AB i

−→
DC jednaki su ako i samo ako je četverokut ABCD

paralelogram.
Dokaz: ⇒ Neka su vektori

−→
AB i

−→
DC jednaki. Tada su im pravci nositelji

paralelni i vrijedi da je |AB| = |DC|, a to je dovoljno da četverokut
ABCD bude paralelogram.
⇐ Neka je četverokut ABCD paralelogram. Tada su nasuprotne
stranice AB i DC paralelograma paralelne i jednake duljine, a kako su
i orijentacije vektora

−→
AB i

−→
DC jednake, onda su to jednaki vektori.

Slika 1.0.5: Kriterij za jednakost vektora

Temeljni stavak o vektorima
Neka je O bilo koja točka prostora i neka je

−→
AB vektor. Tada postoji

jedinstvena točka P prostora za koju
−→
OP =

−→
AB.

Dokaz: Dokaz ove tvrdnje slijedi iz činjenice da postoji samo jedna
točka P prostora takva da je četverokut OPBA paralelogram. Onda
je
−→
OP =

−→
AB. Time smo pronašli vektor jednak početnom koji ima

početak u unaprijed zadanoj točki O.
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Slika 1.0.6: Nanošenje vektora u točku

S obzirom na gornji stavak, prirodno je vektore označavati bez
isticanja početne i krajnje točke, jednim simbolom npr. −→a .
Vektor kojemu su početak i kraj u istoj točki zovemo nulvektor i
označavamo

−→
0 . Nulvektor ima duljinu 0 te nema smjer ni orijentaciju.

U ravnini postoje najviše dva nekolinearna vektora. Pretpostavimo
da su −→a i

−→
b dva nekolinearna vektora te ih nanesimo s početkom

u točki O. Tada kažemo da vektori
−→
OA i

−→
OB razapinju (odred̄uju)

trokut OAB i paralelogram OACB.

Slika 1.0.7: Nekolinearni vektori~a i~b
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Slika 1.0.8: Paralelogram i trokut razapeti s dva nekolinearna vektora

Komplanarni vektori su vektori koji pripadaju istoj ili paralelnim
ravninama. U suprotnom kažemo da su vektori nekomplanarni.
Očito je da su kolinearni vektori nužno komplanarni.
U prostoru postoje najviše tri vektora koji nisu komplanarni. Tri
nekomplanarna vektora −→a ,

−→
b i −→c razapinju (odred̄uju) trostranu

piramidu OABC, četverostranu piramidu OADBC i paralelopiped
OADBCA′D′B′.

Slika 1.0.9: Trostrana piramida razapeta s tri nekomplanarna vektora

Slika 1.0.10: Četverostrana piramida razapeta s tri nekomplanarna vektora
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Slika 1.0.11: Paralelopiped razapet s tri nekomplanarna vektora

1.1 zbrajanje vektora

Definicija 3: Neka su zadani vektori ~a i ~b te točke O, A i B takve da
je −→a =

−→
OA i

−→
b =

−→
AB. Zbroj vektora ~a i~b je vektor −→c =

−→
OB. Ovaj

način zbrajanja vektora naziva se pravilo trokuta.

Slika 1.1.1: Zbrajanje vektora pravilom trokuta

Vektore možemo zbrajati i po pravilu paralelograma. Zbroj vektora
~a =
−→
OA i~b =

−→
OB je dijagonala paralelograma ~c =

−→
OC.
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Slika 1.1.2: Zbrajanje vektora pravilom paralelograma

Za zbrajanje više od 2 vektora koristimo pravilo nadovezivanja,
vidi sliku 1.1.3. Svaki sljedeći vektor u nizu postavlja se tako da
mu je početak u krajnjoj točki prethodnog vektora. Na slici 1.1.3 je
−→a6 = −→a1 +−→a2 +−→a3 +−→a4 +−→a5 .

Slika 1.1.3: Zbrajanje nadovezivanjem

Zbrajanje vektora ima sljedeća svojstva:

1. (−→a +
−→
b ) +−→c = −→a + (

−→
b +−→c )

(asocijativnost zbrajanja vektora)

2. −→a +
−→
0 = −→a

3. za svaki vektor~a postoji vektor
−→
a′ takav da je

−→a +−→a1 = −→a1 +−→a =
−→
0

−→a1 - suprotni vektor vektora −→a (označavamo ga −−→a )

4. −→a +
−→
b =

−→
b +−→a

(komutativnost zbrajanja vektora).
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Svojstva zbrajanja vektora su prikazana na sljedećim slikama:

Slika 1.1.4: Asocijativnost zbrajanja vektora

Slika 1.1.5: Komutativnost zbrajanja vektora

Slika 1.1.6: Suprotni vektori

Oduzimanje vektora je zbrajanje sa suprotnim vektorom. Vektor
−→a + (−

−→
b ) kraće označavamo −→a −

−→
b i nazivamo razlika vektora −→a

i
−→
b .

Primjer 2. Primjer vektorske veličine jest sila jer uz iznos, silu odred̄uju
točka u kojoj djeluje (hvatište), pravac na kojem djeluje (smjer), te njezina
orijentacija. Općenito ćemo rezultantnu silu dobiti kao vektorski zbroj kom-
ponenti. Pritom ćemo upotrijebiti pravilo trokuta ili pravilo paralelograma.
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Slika 1.1.7: Zbrajanje sila

Slika 1.1.8: Zbrajanje sila istog smjera

1.2 množenje realnog broja i vektora

Množenjem realnog broja (skalara) λ i vektora ~a dobivamo vektor
λ~a zadan na sljedeći način:

• Ako je λ = 0 ili je −→a =
−→
0 , onda je λ−→a =

−→
0

• Ako je λ > 0, onda je vektor λ−→a jednako orijentiran kao i vektor
−→a , a ako je λ < 0, vektori −→a i λ−→a su suprotno orijentirani, za
svaki −→a 6= −→0

• Vektora λ−→a ima duljinu |λ−→a | = |λ||−→a |.

Neka su λ i µ realni brojevi te −→a i
−→
b vektori. Operacija množenja

skalara i vektora ima sljedeća svojstva:

• λ(−→a +
−→
b ) = λ−→a + λ

−→
b

• (λ + µ)−→a = λ−→a + µ−→a

• (λµ)−→a = λ(µ−→a ).

Jedinični vektor vektora −→a 6= −→0 vektor je istog smjera i orijentacije
kao vektor~a čiji je modul 1 i označavamo ga s −→a0 . On je jednak
−→a0 = 1

|−→a |
−→a =

−→a
|−→a | . Ima isti smjer i orijentaciju kao i vektor −→a .

Zadatak 1. Na slici 1.2.1 prikazan je pravilan šesterokut ABCDEF sa
središtem u točki S. Neka je G polovište stranice BC i H polovište stranice
CD. Označimo vektore

−→
AB i

−→
BC s −→m i −→n . Izrazite vektore

−→
AH,

−→
GS,
−→
AE,−→

GH i
−→
GF preko vektora −→m i −→n .
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Slika 1.2.1: Zadani elementi Zadatka 1

Rješenje:

Slika 1.2.2: Rješenje Zadatka 1

Najprije ćemo naći vektor
−→
BS =

−→
CD =

−→
AF = −−→m +−→n . Sad je

−→
AH = −→m +−→n + 1

2
−→
CD = −→m +−→n + 1

2 (−
−→m +−→n ) = 1

2
−→m + 3

2
−→n ,

−→
GS = − 1

2
−→n +

−→
BS = − 1

2
−→n −−→m +−→n = −−→m + 1

2
−→n ,

−→
AE = −→m + 2

−→
BS = −→m + 2(−−→m +−→n ) = −−→m + 2−→n ,

−→
GH = 1

2
−→n + 1

2
−→
CD = 1

2
−→n + 1

2 (−
−→m +−→n ) = − 1

2
−→m +−→n ,

−→
GF = − 1

2
−→n −−→m +

−→
AF = − 1

2
−→n −−→m + (−−→m +−→n ) = −2−→m + 1

2
−→n .
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Zadatak 2. U paralelogramu PQRS je
−→
PQ = 2−→a i

−→
PS =

−→
b . Točka T je

takva da vrijedi
−→
PT = 2

−→
b . Ako se pravci PR i QS sijeku u točki X, a pravci

RS i QT u točki Y, prikažite vektore
−→
TR,
−→
PY,
−→
QY i

−→
XY pomoću −→a i

−→
b .

Rješenje:

Slika 1.2.3: Rješenje Zadatka 2

Primijetimo najprije da je četverokut SQRT paralelogram, pa se
dijagonale SR i QT raspolavljaju.

−→
TR =

−→
TS +

−→
SR = −

−→
b + 2−→a ,

−→
PY =

−→
PS +

−→
SY =

−→
b +−→a ,

−→
QY =

−→
QR +

−→
RY =

−→
b −−→a ,

−→
XY =

−→
XS +

−→
SY =

1
2
−→
QS +−→a =

1
2
(
−→
QP +

−→
PS) +−→a

=
1
2
(−2−→a +

−→
b ) +−→a =

1
2
−→
b .

1.3 linearna kombinacija vektora

Definicija 4: Ako su −→a1 , . . . ,−→an vektori i λ1, . . . , λn skalari, onda vek-
tor −→a = λ1

−→a1 + · · ·+ λn
−→an nazivamo linearna kombinacija vektora
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−→a1 , . . . ,−→an s koeficijentima λ1, . . . , λn. Kažemo još da je vektor −→a
rastavljen (razvijen) po vektorima −→a1 , . . . ,−→an .

Mi ćemo ovdje promatrati dvodimenzionalan i trodimenzionalan
vektorski prostor te ćemo istražiti vezu izmed̄u algebarskog pojma
linearne kombinacije vektora i geometrijskog pojma kolinearnosti i
komplanarnosti vektora.

Neka je −→a 6= −→0 i
−→
b vektor kolinearan s vektorom −→a . Tada postoji

jedinstveni realni broj α takav da je
−→
b = α−→a .

Ako je vektor
−→
b jednako orijentiran kao i vektor −→a , onda je α > 0. U

suprotnom je α < 0.

Slika 1.3.1:~b = α~a, α > 0, ~b′ = α′~a, α′ < 0

Neka je (−→a ,
−→
b ) ured̄eni par nekolinearnih vektora. Tada za svaki

vektor −→c , koji je komplanaran s −→a i
−→
b , postoji jedinstveni ured̄eni

par realnih brojeva (α, β) takav da je

−→c = α−→a + β
−→
b .

Umjesto dokaza pogledajmo sliku 1.3.2:
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Slika 1.3.2: ~c = α~a + β~b

Nanesimo vektor −→c s početkom u točki O te sad imamo da je
−→c =

−→
OC. Početkom vektora −→c povucimo pravac p paralelan s vekto-

rom −→a , a krajem vektora −→c pravac q paralelan s vektorom
−→
b . Kako

pravci p i q nisu paralelni, sijeku se u točki P. Sad je
−→
OC =

−→
OP +

−→
PC,

gdje je vektor
−→
OP kolinearan s vektorom −→a pa se može zapisati kao

−→
OP = α−→a , a

−→
PC je kolinearan s vektorom

−→
b pa se može zapisati kao

−→
PC = β

−→
b . Vektor α~a + β

−→
b zovemo linearna kombinacija vektora

−→a i
−→
b s koeficijentima α i β.

Neka je sad (−→a ,
−→
b ,−→c ) ured̄ena trojka nekomplanarnih vektora.

Tada za svaki vektor
−→
d postoji jedinstvena ured̄ena trojka realnih

brojeva (α, β, γ) takva da je

−→
d = α−→a + β

−→
b + γ−→c .

Umjesto dokaza pogledajmo sljedeće slike:



22 vektori

Slika 1.3.3: Nekomplanarni vektori (~a,~b,~c) i vektor ~d

Nanesimo vektore s početkom u istu točku O. Neka je −→a =
−→
OA,

−→
b =

−→
OB, −→c =

−→
OC i

−→
d =

−→
OD. Vidimo da vektori −→a i

−→
b odred̄uju

ravninu π te da vektor −→c ne leži u toj ravnini. Točkom D povucimo
pravac paralelan s vektorom −→c . On ravninu π probada u točki D′.

Slika 1.3.4: ~d = α~a + β~b + γ~c

Sad je
−→
OD =

−−→
OD′ +

−−→
D′D. Po prethodnom je slučaju

−−→
OD′ =

α−→a + β
−→
b , a kako je vektor

−−→
D′D kolinearan s vektorom −→c , možemo

ga napisati kao γ−→c . Vektor α−→a + β
−→
b + γ−→c zovemo linearna kom-

binacija vektora −→a ,
−→
b i −→c s koeficijentima α, β i γ.

Sad ćemo bez dokaza navesti dva teorema koja nam daju karakteri-
zaciju kolinearnosti i komplanarnosti vektora.
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Teorem 1. Dva vektora −→a i
−→
b kolinearna su ako i samo ako postoji broj

α ∈ R takav da je
−→
b = α−→a .

Teorem 2. Tri vektora −→a ,
−→
b i −→c komplanarna su ako i samo ako se svaki

od njih može prikazati kao linearna kombinacija ostalih dvaju.

Zadatak 3. Točka C dijeli dužinu AB u omjeru 2 : 1. Prikažite vektor
−→
OC

pomoću vektora
−→
OA i

−→
OB.

Rješenje:

Slika 1.3.5: Rješenje Zadatka 3

Točkom C povucimo pravac paralelan s vektorom
−→
OB koji vektor

−→
OA siječe u točki D. Dobivamo vektor

−→
DC kolinearan s

−→
OB. Iz sličnosti

trokuta ADC i AOB zaključujemo da je
−→
DC = 2

3
−→
OB i

−→
DA = 2

3
−→
OA, tj.

−→
OD = 1

3
−→
OA. Slijedi da je

−→
OC =

1
3
−→
OA +

2
3
−→
OB.

Zadatak 4.
Neka su A, B i C vrhovi trokuta, −→a =

−→
AB,
−→
b =

−→
AC i neka je −→c =

−→
AP

orijentirana težišnica trokuta. Rastavite vektor −→c u smjeru vektora −→a i
−→
b .

Rješenje: Nadopunimo trokut ABC do paralelograma ABDC.
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Slika 1.3.6: Rješenje Zadatka 4

Sad imamo:

2−→c = −→a +
−→
b

⇒ −→c =
1
2
−→a +

1
2
−→
b .

Zadatak 5.
Dokažite da se u paralelogramu dijagonale raspolavljaju.

Rješenje: Označimo s E polovište dužine AC, a s F polovište dužine
BD. Moramo dokazati da je E = F, tj.

−→
OE =

−→
OF.

Slika 1.3.7: Rješenje Zadatka 5
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Sad je

−→
OE =

−→
OA +

−→
AE =

−→
OA +

1
2
−→
AC =

−→
OA +

1
2

(−→
AB +

−→
AD
)

,

−→
OF =

−→
OA +

−→
AD +

−→
DF =

−→
OA +

−→
AD +

1
2
−→
DB

=
−→
OA +

−→
AD +

1
2

(
−−→AD +

−→
AB
)
=
−→
OA +

1
2

(−→
AB +

−→
AD
)

,

pa je time tvrdnja dokazana.

Zadatak 6.
Neka je zadan pravilan tetraedar ABCD. Rastavite

1. vektor visine
−−→
D′D u smjeru vektora −→a =

−→
AB,
−→
b =

−→
AC i −→c =

−→
AD,

2. vektor visine
−−→
D1D stranice ABD u smjeru vektora −→a =

−→
AB,
−→
b =

−→
AC i −→c =

−→
AD.

Rješenje:

Slika 1.3.8: Zadani elementi Zadatka 6
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Slika 1.3.9: Rješenje Zadatka 6

−−→
D1C = −1

2
−→a +

−→
b ,

−→
CD = −

−→
b +−→c ,

−→v =
−−→
D′D =

−−→
D′C +

−→
CD =

2
3
−−→
D1C +

−→
CD

=
2
3

(
−1

2
−→a +

−→
b
)
−
−→
b +−→c = −1

3
−→a − 1

3
−→
b +−→c ,

−→v1 =
−−→
D1D = −1

2
−→a +−→c .

1.4 baza i koordinatni sustav

U prethodnom poglavlju vidjeli smo da svaki vektor možemo napisati
kao linearnu kombinaciju tri nekomplanarna vektora. Zbog toga
kažemo da je trojka nekomplanarnih vektora baza u prostoru svih
vektora i da je taj prostor trodimenzionalan.
Isto tako će ured̄eni par nekolinearnih vektora biti baza u prostoru
svih vektora koji su komplanarni s tim vektorima i taj je prostor
dvodimenzionalan.
Vektor različit od nulvektora bit će baza u prostoru svih vektora
kolinearnih s tim vektorom i taj je prostor jednodimenzionalan.
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Neka je (−→a ,
−→
b ,−→c ) baza i neka je

−→
d vektor. Kao što smo već rekli,

tada se vektor
−→
d na jedinstven način može napisati kao

−→
d = α−→a + β

−→
b + γ−→c .

Ured̄enu trojku (α, β, γ) nazivamo trojkom skalarnih komponenata
vektora ~d u bazi (−→a ,

−→
b ,−→c ).

Zadatak 7.
Neka je (−→a ,

−→
b ,−→c ) baza. Odredite x ∈ R tako da vektori

−→m = −→a + 2
−→
b + 3−→c i −→n = 1

2
−→a +

−→
b + 6x−→c budu kolinearni.

Rješenje: Kako su −→m i −→n kolinearni, vrijedi

−→n = α−→m , α ∈ R

1
2
−→a +

−→
b + 6x−→c = α

(−→a + 2
−→
b + 3−→c

)
,

iz čega slijedi sustav

1
2
= α

1 = 2α⇒ α =
1
2

6x = 3α⇒ x =
1
4

.

Dakle, −→n = 1
2
−→a +

−→
b + 3

2
−→c i −→n = 1

2
−→m .

Zadatak 8.
Neka je (−→a ,

−→
b ,−→c ) baza i neka su −→m = −→a + 2

−→
b +−→c , −→n =

−→
b + 2−→c

i −→p = 2−→a + 5
−→
b + 4−→c komplanarni vektori. Prikažite vektor −→m kao

linearnu kombinaciju vektora −→n i −→p .

Rješenje: Uzmimo da je

−→m = α−→n + β−→p
−→a + 2~b +−→c = α

(−→
b + 2−→c

)
+ β

(
2−→a + 5

−→
b + 4−→c

)
.

Iz toga dobivamo sustav

1 = 2β

2 = α + 5β

1 = 2α + 4β.

Iz prve i druge jednadžbe dobivamo da je α = − 1
2 , β = 1

2 . Kako
dobiveni α i β zadovoljavaju i treću jednadžbu, slijedi da je
−→m = − 1

2
−→n + 1

2
−→p .

Neka je O točka, a (−→a ,
−→
b ,−→c ) baza. Ured̄eni par

(
O, (−→a ,

−→
b ,−→c )

)
zovemo koordinatni sustav, a točku O ishodište koordinatnog
sustava.
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Slika 1.4.1: Koordinatni sustav

Neka je
(

O, (−→a ,
−→
b ,−→c )

)
koordinatni sustav. Svaki vektor s počet-

kom u točki O nazivamo radijvektor.
Neka je T točka. Njoj pridružujemo vektor

−→
OT kojeg nazivamo

radijvektor točke T u koordinatnom sustavu
(

O, (−→a ,
−→
b ,−→c )

)
.

Slika 1.4.2: Radijvektor točke T u koordinatnom sustavu
(

O, (~a,~b,~c)
)

Kako je (−→a ,
−→
b ,−→c ) baza, onda se vektor

−→
OT na jedinstven način

može zapisati kao
−→
OT = x−→a + y

−→
b + z−→c , tj. vektoru

−→
OT pridružena

je trojka (x, y, z) skalarnih komponenata u bazi (−→a ,
−→
b ,−→c ). Trojku

(x, y, z) za koju je
−→
OT = x−→a + y

−→
b + z−→c nazivamo trojkom

koordinata točke T u koordinatnom sustavu
(

O, (−→a ,
−→
b ,−→c )

)
i oz-

načavamo T(x, y, z).
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Zadatak 9. Neka su (x1, y1, z1) i (x2, y2, z2) trojke koordinata točaka T1 i T2

u koordinatnom sustavu
(

O, (−→a ,
−→
b ,−→c )

)
. Zapišite u danom koordinatnom

sustavu vektor
−−→
T1T2.

Rješenje:

Slika 1.4.3: Vektor u koordinatnom sustavu
(

O, (~a,~b,~c)
)

Neka su
−−→
OT1 = x1

−→a + y1
−→
b + z1

−→c i
−−→
OT2 = x2

−→a + y2
−→
b + z2

−→c
radijvektori točaka T1 i T2 u koordinatnom sustavu

(
O, (−→a ,

−→
b ,−→c )

)
.

Sad je vektor

−−→
T1T2 = −−−→OT1 +

−−→
OT2

= −
(

x1
−→a + y1

−→
b + z1

−→c
)
+
(

x2
−→a + y2

−→
b + z2

−→c
)

= (x2 − x1)
−→a + (y2 − y1)

−→
b + (z2 − z1)

−→c .

Zadatak 10. Neka su (x1, y1, z1) i (x2, y2, z2) trojke koordinata točaka T1

i T2 u koordinatnom sustavu
(

O, (−→a ,
−→
b ,−→c )

)
. Pokažite da polovište P

stranice T1, T2 ima koordinate P
(

x1+x2
2 , y1+y2

2 , z1+z2
2

)
.

Rješenje: Za odrediti koordinate točke P moramo odrediti radijvek-
tor točke P. Sad imamo da je

−→
OP =

−−→
OT1 +

−→
T1P =

−−→
OT1 +

1
2
−−→
T1T2

= x1
−→a + y1

−→
b + z1

−→c +
1
2

[
(x2 − x1)

−→a + (y2 − y1)
−→
b + (z2 − z1)

−→c
]

=
x1 + x2

2
−→a +

y1 + y2

2
−→
b +

z1 + z2

2
−→c .

Kako skalarne komponente radijvektora točke u bazi odgovaraju koor-
dinatama te točke, dobivamo da P ima koordinate P

(
x1+x2

2 , y1+y2
2 , z1+z2

2

)
.
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Slika 1.4.4: Koordinate polovišta dužine u koordinatnom sustavu(
O, (~a,~b,~c)

)
Zadatak 11. Neka su (x1, y1, z1), (x2, y2, z2) i (x3, y3, z3) trojke koordinata
točaka T1, T2 i T3 u koordinatnom sustavu

(
O, (−→a ,

−→
b ,−→c )

)
. Slično kao

u prethodnom primjeru pokažite da težište trokuta T1T2T3 ima koordinate
T
(

x1+x2+x3
3 , y1+y2+y3

3 , z1+z2+z3
3

)
.

Rješenje: Za riješiti zadatak koristimo koordinate polovišta iz pret-
hodnog zadatka te činjenicu da težište dijeli težišnicu u omjeru 2 : 1
od vrha.

Zadatak 12.
Leže li točke T1, T2 i T3, zadane svojim koordinatama u nekom koordinatnom
sustavu

(
O,−→a ,

−→
b ,−→c )

)
, na jednom pravcu?

1. T1(1,−3, 5), T2(2, 7, 1), T3(2,−4, 3);

2. T1(2, 3,−5), T2(4, 2,−3), T3(3, 5
2 ,−4).

Rješenje: 1. Točke leže na jednom pravcu ako su vektori
−−→
T1T2 i

−−→
T1T3

kolinearni, a po Teoremu 1 to vrijedi ako i samo ako se vektor
−−→
T1T2

može zapisati kao
−−→
T1T2 = α

−−→
T1T3. Sad imamo

−−→
T1T2 = (2− 1)−→a + (7 + 3)

−→
b + (1− 5)−→c = −→a + 10

−→
b − 4−→c ,

−−→
T1T3 = (2− 1)−→a + (−4 + 3)

−→
b + (3− 5)−→c = −→a −

−→
b − 2−→c .

Uvrštavanjem vektora u gornju jednakost dobivamo

−→a + 10
−→
b − 4−→c = α

(−→a −−→b − 2−→c
)

iz čega slijedi sustav

1 = α

10 = −α

−4 = −2α.
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Vidimo da ne možemo pronaći α takav da vrijedi gornja jednakost, što
znači da vektori nisu kolinearni i da zadane točke ne leže na jednom
pravcu.
2. Slično kao pod 1. računamo
−−→
T1T2 = (4− 2)−→a + (2− 3)

−→
b + (−3 + 5)−→c = 2−→a −

−→
b + 2−→c ,

−−→
T1T3 = (3− 2)−→a + (

5
2
− 3)
−→
b + (−4 + 5)−→c = −→a − 1

2
−→
b +−→c .

Vidimo da je
−−→
T1T2 = 2

−−→
T1T3, tj. vektori

−−→
T1T2 i

−−→
T1T3 su kolinearni, pa

točke T1, T2 i T3 leže na istom pravcu.

Zadatak 13.
Leže li točke T1, T2, T3 i T4, zadane svojim koordinatama u nekom koordinat-
nom sustavu

(
O, (−→a ,

−→
b ,−→c )

)
, u jednoj ravnini?

1. T1(2, 1,−2), T2(4, 4,−1), T3(4,−1,−1), T4(4,−6,−1);

2. T1(−1, 2, 1), T2(0,−4, 0), T3(1, 0,−2), T4(2,−2, 1).

Rješenje: 1. Točke T1, T2, T3 i T4 leže u jednoj ravnini ako su vektori
−−→
T1T2,

−−→
T1T3 i

−−→
T1T4 komplanarni, a po Teoremu 2 to vrijedi ako i samo

ako se jedan od njih može zapisati kao linearna kombinacija ostala
dva. Probajmo sad zapisati

−−→
T1T2 = α

−−→
T1T3 + β

−−→
T1T4. Sad imamo

−−→
T1T2 = (4− 2)−→a + (4− 1)

−→
b + (−1 + 2)−→c = 2−→a + 3

−→
b +−→c ,

−−→
T1T3 = (4− 2)−→a + (−1− 1)

−→
b + (−1 + 2)−→c = 2−→a − 2

−→
b +−→c ,

−−→
T1T4 = (4− 2)−→a + (−6− 1)

−→
b + (−1 + 2)−→c = 2−→a − 7

−→
b +−→c .

Uvrštavanjem ovih vektora u gornju jednakost dobivamo

2−→a + 3
−→
b +−→c = α

(
2−→a − 2

−→
b +−→c

)
+ β

(
2−→a − 7

−→
b +−→c

)
.

Izjednačavanjem vektora s lijeve i desne strane dobivamo 3 jednadžbe
s 2 nepoznanice:

2 = 2α + 2β

3 = −2α− 7β

1 = α + β.

Iz 2. i 3. jednadžbe dobivamo β = −1 i α = 2. Vidimo da dobiveni
α i β zadovoljavaju i prvu jednadžbu. To onda znači da se vektor
−−→
T1T2 može zapisati kao

−−→
T1T2 = 2

−−→
T1T3 −

−−→
T1T4 pa su sva tri vektora

komplanarna i sve četiri točke leže u jednoj ravnini.
2. Slično kao pod 1. sad imamo
−−→
T1T2 = (0 + 1)−→a + (−4− 2)

−→
b + (0− 1)−→c = −→a − 6

−→
b −−→c ,

−−→
T1T3 = (1 + 1)−→a + (0− 2

−→
b + (−2− 1)−→c = 2−→a − 2

−→
b − 3−→c ,

−−→
T1T4 = (2 + 1)−→a + (−2− 2)

−→
b + (1− 1)−→c = 3−→a − 4

−→
b ,
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te dobivamo

−→a − 6
−→
b −−→c = α

(
2−→a − 2

−→
b − 3−→c

)
+ β

(
3−→a − 4

−→
b
)

.

Iz gornje jednakosti slijedi sustav

1 = 2α + 3β

− 6 = −2α− 4β

− 1 = −3α⇒ α =
1
3

.

Vraćanjem dobivenog α u prvu jednadžbu dobivamo β = 1
9 . Kako

dobiveni α i β ne zadovoljavaju drugu jednadžbu, tj. −6 6= − 10
9 ,

zaključujemo da se vektor
−−→
T1T2 ne može zapisati preko vektora

−−→
T1T3 i

−−→
T1T4, što znači da vektori nisu komplanarni.

1.5 skalarni produkt vektora

Kako bismo definirali skalarni produkt vektora najprije moramo defi-
nirati kut izmed̄u dva vektora. Uzmimo vektore −→a 6= −→0 i

−→
b 6= −→0 te

ih nanesimo s početkom u istu točku O tako da je
−→
OA = −→a i

−→
OB =

−→
b .

Kut izmed̄u vektora −→a i
−→
b je manji kut od dva kuta koji zatvaraju

polupravci p i q na kojima leže vektori −→a i
−→
b pa vrijedi da je

0 ≤ ∠(−→a ,
−→
b ) ≤ π.

Slika 1.5.1: Kut izmed̄u vektora

Definicija 5: Neka su dani vektori −→a 6= −→0 i
−→
b 6= −→0 i neka je

ϕ = ∠(−→a ,
−→
b ). Skalarni produkt vektora −→a i

−→
b je realan broj (ska-

lar)
−→a
−→
b = |−→a ||

−→
b |cosϕ.
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Ako je −→a =
−→
0 ili

−→
b =

−→
0 , onda ϕ = ∠(−→a ,

−→
b ) nije definiran pa

definiramo da je
−→a
−→
b = 0.

U literaturi često se koristi i oznaka −→a ·
−→
b za skalarni produkt.

Iz definicije slijedi da je

−→a −→a = |−→a ||−→a |cos0 = |−→a |2

⇒ |−→a | =
√−→a −→a

te da je

cosϕ =
−→a
−→
b

|−→a ||
−→
b |

.

Za sve vektore −→a ,
−→
b i −→c te svaki realan broj λ, vrijede sljedeća

svojstva skalarnog produkta:

1. −→a
−→
b =

−→
b −→a (komutativnost skalarnog produkta)

2. (λ−→a )
−→
b = λ(−→a

−→
b )

3. (−→a +
−→
b )−→c = −→a −→c +

−→
b −→c (distributivnost skalarnog pro-

dukta prema zbrajanju vektora)

4. −→a −→a ≥ 0.

Karakterizacija okomitosti dvaju vektora
Neka je −→a 6= −→0 i

−→
b 6= −→0 . Vektori −→a i

−→
b okomiti su ako i samo

ako je
−→a
−→
b = 0.

Dokaz: ⇒ Neka su vektori −→a i
−→
b okomiti. Tada je skalarni produkt

jednak
−→a
−→
b = |−→a ||

−→
b |cos

π

2
= 0.

⇐ Neka je sad −→a
−→
b = 0. Kako je −→a 6= −→0 i

−→
b 6= −→0 , onda mora

vrijediti da je cos∠(−→a ,
−→
b ) = 0, iz čega slijedi da je ∠(−→a ,

−→
b ) = π

2 tj.
−→a ⊥

−→
b .

Zadatak 14. Neka je dan pravilan šesterokut ABCDEF stranice duljine
2. Neka je G polovište stranice BC i H polovište stranice AF. Izračunajte
duljinu vektora

−→
AC te kut izmed̄u vektora

−→
HG i

−→
HE.

Rješenje: Nacrtajmo pravilan šesterokut ABCDEF sa središtem u
točki S te označimo vektore

−→
AB i

−→
AF s −→m i −→n .
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Slika 1.5.2: Zadani elementi Zadatka 14

Sve tražene vektore izrazit ćemo preko vektora −→m i −→n jer znamo
da je |−→m | = |−→n | = 2 te da je ∠(−→m ,−→n ) = 2π

3 pa možemo izračunati
skalarni produkt −→m−→n = 2 · 2 · cos 2π

3 = −2.

Slika 1.5.3: Rješenje Zadatka 14
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Najprije pronad̄imo vektor
−→
AS =

−→
BC =

−→
FE = −→m +−→n .

Sad je
−→
AC =

−→
AB +

−→
BC = −→m +−→m +−→n = 2−→m +−→n . Onda je

|−→AC| =
√
−→
AC
−→
AC =

√(
2−→m +−→n

) (
2−→m +−→n

)
=
√

4|−→m |2 + 4−→m−→n + |−→n |2 =
√

16− 8 + 4 =
√

12 = 2
√

3.

Time smo riješili prvi dio zadatka.
Sad ćemo vektore

−→
HG i

−→
HE izraziti preko vektora −→m i −→n , a potom im

izračunati module. Dobivamo:

−→
HG =

−→
HA +

−→
AB +

−→
BG = −1

2
−→n +−→m +

1
2
(−→m +−→n

)
=

3
2
−→m ,

−→
HE =

−→
HF +

−→
FE =

1
2
−→n +−→m +−→n = −→m +

3
2
−→n ,

pa je

|−→HG| =
√
−→
HG
−→
HG =

√
9
4
−→m−→m =

√
9 = 3,

|−→HE| =
√
−→
HE
−→
HE =

√(
−→m +

3
2
−→n
)(
−→m +

3
2
−→n
)

=

√
|−→m |2 + 3−→m−→n +

9
4
|−→n |2 =

√
4− 6 + 9 =

√
7.

Konačno dobivamo

cos∠
(−→

HG,
−→
HE
)
=

−→
HG
−→
HE

|−→HG||−→HE|
=

3
2
−→m
(−→m + 3

2
−→n
)

3
√

7
=

3
2
−→m−→m + 9

4
−→m−→n

3
√

7

=
3
2 · 4 +

9
4 · (−2)

3
√

7
=

3
2

3
√

7
⇒ ∠

(−→
HG,
−→
HE
)
= 79.11o.

Zadatak 15. Neka je dan pravilan tetraedar ABCD duljine stranice 3.
Odredite duljinu vektora visine

−−→
D′D te duljinu vektora visine

−−→
D1D stranice

ABD.

Rješenje:

Koristimo se zadatkom 6 gdje smo vektore −→v =
−−→
D′D i −→v1 =

−−→
D1D

već izrazili preko vektora −→a =
−→
AB,
−→
b =

−→
AC i −→c =

−→
AD.
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Slika 1.5.4: Rješenje Zadatka 15

Imamo da je

−→v =
−−→
D′D = −1

3
−→a − 1

3
−→
b +−→c ,

−→v1 =
−−→
D1D = −1

2
−→a +−→c .

Sad dobivamo

|−→v | =
√−→v −→v =

√
(−1

3
−→a − 1

3
−→
b +−→c )(−1

3
−→a − 1

3
−→
b +−→c )

=

√
1
9
−→a −→a +

1
9
−→
b
−→
b +−→c −→c +

2
9
−→a
−→
b − 2

3
−→a −→c − 2

3
−→
b −→c

=

√
1 + 1 + 9 +

2
9
· 3 · 3 · cos

π

3
− 2

3
· 3 · 3 · cos

π

3
− 2

3
· 3 · 3 · cos

π

3
=
√

11 + 1− 3− 3 =
√

6,

|−→v1 | =
√
−→v1
−→v1 =

√
(−1

2
−→a +−→c )(−1

2
−→a +−→c )

=

√
1
4
−→a −→a −−→a −→c +−→c −→c

=

√
9
4
− 3 · 3 · cos

π

3
+ 9

=

√
9
4
− 9

2
+ 9 =

√
27
4

=
3
2

√
3.
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Zadatak 16. Neka je dan pravilan oktaedar ABCDEF duljine stranice 2.
Odredite duljinu vektora dijagonale

−→
FE te kut izmed̄u bočnih bridova i ravnine

ABCD.

Rješenje:

Slika 1.5.5: Zadani elementi Zadatka 16

Uzmimo da je −→a =
−→
AB,
−→
b =

−→
AD i −→c =

−→
AE.

Slika 1.5.6: Rješenje Zadatka 16

Sad je

−→
AS =

1
2
(−→a +

−→
b ),

pa je

−→
SE = −−→AS +

−→
AE = −1

2
(−→a +

−→
b ) +−→c

i
−→
FE = 2

−→
SE = −−→a −

−→
b + 2−→c .
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Dobivamo

|−→FE| =
√
−→
FE
−→
FE =

√
(−−→a −

−→
b + 2−→c )(−−→a −

−→
b + 2−→c )

=

√
−→a −→a +

−→
b
−→
b + 4−→c −→c + 2−→a

−→
b − 4−→a −→c − 4

−→
b −→c

=

√
4 + 4 + 16 + 2 · 2 · 2 · cos

π

2
− 4 · 2 · 2 · cos

π

3
− 4 · 2 · 2 · cos

π

3

=
√

24 + 0− 8− 8 =
√

8 = 2
√

2,

|−→AS| =
√
−→
AS
−→
AS =

√
1
4
(−→a +

−→
b )(−→a +

−→
b )

=
1
2

√
−→a −→a + 2−→a

−→
b +
−→
b
−→
b

=
1
2

√
4 + 2 · 2 · 2 · cos

π

2
+ 4 =

√
2

i

cos∠
(−→

AS,
−→
AE
)
=

−→
AS
−→
AE

|−→AS||−→AE|
=

(
1
2
−→a + 1

2
−→
b
)−→c

2
√

2
=

1
2~a~c +

1
2
~b~c

2
√

2

=
1
2 · 2 · 2 · cos π

3 + 1
2 · 2 · 2 · cos π

3

2
√

2
=

1√
2
=

√
2

2

⇒ ∠
(−→

AS,
−→
AE
)
=

π

4
.

Ovaj zadatak smo riješili pomoću skalarnog produkta, ali on se jednos-
tavno može riješiti i korištenjem trigonometrije pravokutnog trokuta.

1.6 vektorska projekcija

Neka je dan ured̄eni par vektora (−→a ,
−→
b ). Trebamo naći ured̄eni par

vektora (−→x ,−→y ) takav da je

−→
b = −→x +−→y , −→x ||−→a , −→y −→a = 0. (1)

Na slici 1.6.1 ilustriran je slučaj kad vektori −→a i
−→
b nisu kolinearni i

kad je uvjet −→y −→a = 0 ekvivalentan uvjetu okomitosti −→y ⊥ −→a (jer ako
je vektor

−→
b kolinearan s vektorom −→a , onda je

−→
b = −→x te je −→y =

−→
0 ).

Uzmimo sad netrivijalni slučaj kad je −→a 6= −→0 . Pretpostavimo da
je ured̄eni par (−→x ,−→y ) rješenje danog problema. Iz uvjeta −→x ||−→a i
−→a 6= −→0 slijedi da postoji realan broj α takav da je −→x = α−→a . Sad
dobivamo da je

−→y =
−→
b −−→x =

−→
b − α−→a
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te

0 = −→y −→a = (
−→
b − α−→a )−→a = −→a

−→
b − α|−→a |2 ⇒ α =

−→a
−→
b

|−→a |2
.

Time smo dokazali da ako problem (1) ima rješenje (−→x ,−→y ), onda je
nužno

−→x =

(−→a −→b
|−→a |2

)
−→a

i
−→y =

−→
b −

(−→a −→b
|−→a |2

)
−→a .

Vektor

−→x =

(−→a −→b
|−→a |2

)
−→a =

(−→a −→b
|−→a |

) −→a
|−→a |

=

(−→a −→b
|−→a |

)
−→a0 (2)

zovemo vektorska projekcija vektora
−→
b na vektor −→a . Broj

−→a
−→
b

|−→a |
= −→a0

−→
b

zovemo skalarna projekcija vektora
−→
b na vektor −→a . Apsolutna

vrijednost skalarne projekcije jednaka je duljini vektorske projekcije.

Slika 1.6.1: Vektorska projekcija

Zadatak 17. Neka je dan trokut ABC takav da je
−→
AB = −→m −−→n ,

−→
AC =

2−→m −−→n , |−→m | = 2, |−→n | = 2, ∠(−→m ,−→n ) =
π

3
. Odredite vektor visine

−→
CC′

te duljinu tog vektora.

Rješenje: Skicirajmo trokut ABC te mu označimo visinu CC′.
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Slika 1.6.2: Rješenje Zadatka 17

Sad vidimo da je vektor
−−→
AC′ vektorska projekcija vektora

−→
AC na

vektor
−→
AB pa idemo ga dobiti po prije izvedenoj formuli:

−−→
AC′ =

−→
AB
−→
AC∣∣∣−→AB
∣∣∣2
−→
AB =

(−→m −−→n )(2−→m −−→n )√
(−→m −−→n )2

2 (−→m −−→n )

=
2|−→m |2 −−→m−→n − 2−→n −→m + |−→n |2

|−→m |2 − 2−→m−→n + |−→n |2
(−→m −−→n ) =

2|−→m |2 − 3−→m−→n + |−→n |2

|−→m |2 − 2−→m−→n + |−→n |2
(−→m −−→n )

=
2 · 4− 3 · 2 · 2 · cos π

3 + 4
4− 2 · 2 · 2 · cos π

3 + 4
(−→m −−→n ) =

6
4
(−→m −−→n ) =

3
2
(−→m −−→n ).

Sad je

−→
CC′ = −−→AC +

−−→
AC′ = −(2−→m −−→n ) +

3
2
(−→m −−→n )

= −2−→m +−→n +
3
2
−→m − 3

2
−→n = −1

2
(−→m +−→n ),

|
−→
CC′| =

√
−→
CC′
−→
CC′ =

√
1
4
(−→m +−→n )2 =

√
1
4
(|−→m |2 + 2−→m−→n + |−→n |2)

=

√
1
4
(4 + 2 · 2 · 2 · cos

π

3
+ 4) =

√
3.
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1.7 pravokutni koordinatni sustav

U Poglavlju 1.4 uveli smo pojam koordinatnog sustava. Definirali
smo ga kao ured̄eni par

(
O, (~a,~b,~c)

)
, gdje je O bila neka točka koju

smo zvali ishodište koordinatnog sustava, a ured̄ena trojka (~a,~b,~c) tri
nekomplanarna vektora činila je bazu koordinatnog sustava.
Sad ćemo kao njegov specijalni slučaj definirati pravokutni ili Karte-
zijev koordinatni sustav. Njega je uveo René Descartes u 17. stoljeću,
čime je započeo razvoj koordinatnih sustava te omogućio proučavanje
geometrijskih tijela metodama analitičke geometrije i algebre.
Kažemo da su vektori~a,~b i ~c ortogonalni ako je~a⊥~b,~a⊥~c i~b⊥~c.
Ako su vektori ~a, ~b i ~c ortogonalni, onda nisu komplanarni pa čine
bazu. Bazu ortogonalnih vektora zovemo ortogonalnom bazom. Ako
su vektori ortogonalne baze još i jedinični, takvu bazu zovemo orto-
normirana baza. Iz ortogonalne baze (~a,~b,~c) jednostavno dobivamo
ortonormiranu bazu

(
~a
|~a| ,

~b
|~b|

, ~c
|~c|

)
.

Kažemo da je koordinatni sustav
(

O, (~a,~b,~c)
)

pravokutan ako je

baza (~a,~b,~c) ortonormirana. Koordinate točke u pravokutnom koor-
dinatnom sustavu nazivamo pravokutnim koordinatama točke. Or-
tonormiranu bazu označavat ćemo (~i,~j,~k), a pravokutni koordinatni
sustav

(
O, (~i,~j,~k)

)
.

Pravac točkom O na kojem leži vektor ~i nazivamo x-os ili apscisa,
pravac točkom O na kojem leži vektor ~j nazivamo y-os ili ordinata,
a pravac točkom O na kojem leži vektor~k nazivamo z-os ili aplikata.
Koordinatne osi odred̄uju koordinatne ravnine xy, xz i yz.

Na slikama 1.7.1 i 1.7.2. prikazani su radijvektor
−→
OT točke T i vektor

−→
AB u pravokutnom koordinatnom sustavu

(
O, (~i,~j,~k)

)
.

Slika 1.7.1: Radijvektor u pravokutnom koordinatnom sustavu
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Slika 1.7.2: Vektor u pravokutnom koordinatnom sustavu

Neka su sad dani vektori~a = ax~i + ay~j + az~k i~b = bx~i + by~j + bz~k u

pravokutnom koordinatnom sustavu
(

O, (~i,~j,~k)
)

. Izračunajmo sad

skalarni produkt~a~b pomoću komponenata tih vektora u bazi (~i,~j,~k).
Odredimo najprije skalarne produkte vektora baze:

~i~i = |~i||~i|cos0 = 1

~i~j = |~i||~j|cos
π

2
= 0

~i~k = |~i||~k|cos
π

2
= 0

~j~j = |~j||~j|cos0 = 1

~j~i = |~j||~i|cos
π

2
= 0

~j~k = |~j||~k|cos
π

2
= 0

~k~k = |~k||~k|cos0 = 1

~k~i = |~k||~i|cos
π

2
= 0

~k~j = |~k||~j|cos
π

2
= 0.

Iz toga slijedi da je

~a~b =
(

ax~i + ay~j + az~k
) (

bx~i + by~j + bz~k
)
= axbx + ayby + azbz,

|~a|2 =~a~a = a2
x + a2

y + a2
z ⇒ |~a| =

√
a2

x + a2
y + a2

z .
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Zadatak 18. Neka su dane točke A(−1, 4, 5), B(4,−3, 1) i C(−1, 0, 4) u
pravokutnim koordinatama. Odredite duljinu vektora

−→
AB te skalarni produkt

−→
AB
−→
AC. Koliki je kut izmed̄u vektora

−→
AB i

−→
AC?

Rješenje: Odredimo najprije vektore

−→
AB = (4 + 1)~i + (−3− 4)~j + (1− 5)~k = 5~i− 7~j− 4~k,

−→
AC = (−1 + 1)~i + (0− 4)~j + (4− 5)~k = −4~j−~k.

Sad je

|−→AB| =
√

52 + (−7)2 + (−4)2 =
√

25 + 49 + 16 =
√

90 = 3
√

10,

|−→AC| =
√
(−4)2 + (−1)2 =

√
16 + 1 =

√
17,

−→
AB
−→
AC = 5 · 0− 7 · (−4)− 4 · (−1) = 28 + 4 = 32,

cos∠(
−→
AB,
−→
AC) =

−→
AB
−→
AC

|−→AB||−→AC|
=

32
3
√

10
√

17
⇒ ∠(

−→
AB,
−→
AC) = 35.1o.

Zadatak 19. Odredite realan parametar t takav da vektor −→a = t~i−~j− 2~k
bude okomit na vektor

−→
b = −~i +~k.

Rješenje: Parametar t odredit ćemo iz uvjeta okomitosti −→a
−→
b = 0.

Sad imamo
t · (−1)− 1 · 0− 2 · 1 = 0⇒ t = −2.

Sad ćemo izvesti još jednu formulu koja vrijedi samo u pravokutnom
koordinatnom sustavu. Neka je dan vektor ~a = ax~i + ay~j + az~k te
označimo s α, β i γ kuteve koje vektor ~a zatvara s vektorima~i, ~j i~k.
Slijedi da je

ax =~a~i = |~a|cosα,

ay =~a~j = |~a|cosβ,

az =~a~k = |~a|cosγ.

Dobivamo

|~a|2 = a2
x + a2

y + a2
z = |~a|2cos2α + |~a|2cos2β + |~a|2cos2γ,

iz čega slijedi da je

cos2α + cos2β + cos2γ = 1.
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Zadatak 20.
Odredi točku T(x, y, z) takvu da radijvektor točke T ima modul jednak 6, s
vektorima~i i ~j zatvara kuteve od 45o i 60o te da je aplikata (z-koordinata)
točke T negativna. Koliki je kut koji radijvektor točke T zatvara s vektorom
−→
k ?

Rješenje: Najprije zapišimo radijvektor točke T(x, y, z), tj.
−→
OT = x~i + y~j + z~k. Sad po prethodnim formulama imamo

x =
−→
OT~i = 6cos45o = 6 ·

√
2

2
= 3
√

2,

y =
−→
OT~j = 6cos60o = 6 · 1

2
= 3,

cos245o + cos260o + cos2γ = 1

⇒ cos2γ = 1− 1
4
− 1

2
=

1
4

⇒ cosγ = −1
2
⇒ γ = 120o,

z =
−→
OT~k = 6cos120o = 6 ·

(
−1

2

)
= −3,

pa točka T ima koordinate T(3
√

2, 3,−3).

Kažemo da točka C ∈ AB dijeli dužinu AB u omjeru zlatnog reza
ako se dulji dio |AC| dužine |AB| prema kraćem dijelu |CB| dužine
|AB| odnosi kao cijela dužina |AB| prema duljem dijelu |AC| dužine
|AB|, tj.

|AB|
|AC|

=
|AC|
|CB|

.

Označimo a = |AB|, x = |AC|, a− x = |BC| pa dobivamo

a : x = x : (a− x)

x2 + ax− a2 = 0.

Točka C leži na dužini |AB| pa je rješenje

x =
a
2
(
√

5− 1)

duljina zlatnog reza |AC| dužine |AB| duljine a.

Slika 1.7.3: Zlatni rez
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Zadatak 21. Zadane su točke A(3, 5, 1), B(−1, 1, 3). Nad̄ite točku C koja
dužinu AB dijeli u omjeru zlatnog reza.

Rješenje:
Odredimo duljinu dužine |AB|:

|AB| =
√
(−1− 3)2 + (1− 5)2 + (3− 1)2 =

√
16 + 16 + 4 = 6.

Kako točka C dužinu AB dijeli u omjeru zlatnog reza, onda je duljina
dužine |AC| jednaka

|AC| = 3(
√

5− 1).

Sad je

−→
AB = −4

−→
i − 4

−→
j + 2

−→
k ,

−→
AB0 =

−4
−→
i − 4

−→
j + 2

−→
k

6
= −2

3
−→
i − 2

3
−→
j +

1
3
−→
k ,

pa je

−→
AC = |−→AC| ·−→AB0 = 3(

√
5− 1)

(
−2

3
−→
i − 2

3
−→
j +

1
3
−→
k
)
= (
√

5− 1)
(
−2
−→
i − 2

−→
j +
−→
k
)

,

−→
OC =

−→
OA +

−→
AC = 3

−→
i + 5

−→
j +
−→
k + (

√
5− 1)

(
−2
−→
i − 2

−→
j +
−→
k
)

= (5− 2
√

5)
−→
i + (7− 2

√
5)
−→
j +
√

5
−→
k .

Točka C ima koordinate C
(

5− 2
√

5, 7− 2
√

5,
√

5
)

.

1.8 vektorski produkt vektora

Neka je (−→a ,
−→
b ,−→c ) baza i neka su O, A, B i C točke za koje je

−→
OA = −→a ,

−→
OB =

−→
b i
−→
OC = −→c . Vektori −→a i

−→
b leže u ravnini π,

dok vektor −→c i točka C ne pripadaju toj ravnini.
Ako se iz točke C rotacija iz vektora −→a u vektor

−→
b vidi kao pozi-

tivna rotacija, onda kažemo da (−→a ,
−→
b ,−→c ) desna baza, odnosno da je(

O, (−→a ,
−→
b ,−→c )

)
desni koordinatni sustav.

Napomenimo, pozitivna rotacija je rotacija u smjeru obratnom od
kazaljke na satu.
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Slika 1.8.1: Desni koordinatni sustav

Ako se iz točke C rotacija iz vektora ~a u vektor ~b vidi kao nega-
tivna rotacija, onda kažemo da (−→a ,

−→
b ,−→c ) lijeva baza, odnosno da je(

O, (−→a ,
−→
b ,−→c )

)
lijevi koordinatni sustav.

Slika 1.8.2: Lijevi koordinatni sustav

Neka je (−→a ,
−→
b ) ured̄eni par vektora i ϕ = ∠(−→a ,

−→
b ). Vektorski

produkt vektora −→a i
−→
b je vektor −→a ×

−→
b definiran na sljedeći način:

1. ako je −→a ||
−→
b , onda uzimamo da je −→a ×

−→
b =

−→
0

2. ako vektori −→a i
−→
b nisu kolinearni, onda uzimamo da je −→a ×

−→
b

vektor odred̄en sljedećim uvjetima:

• −→a ×
−→
b je okomit na vektor −→a i na vektor

−→
b

• (−→a ,
−→
b ,−→a ×

−→
b ) je desna baza

• |−→a ×
−→
b | = |−→a ||

−→
b |sin∠(−→a ,

−→
b ).
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Slika 1.8.3: Vektorski produkt vektora

Geometrijska interpretacija modula vektorskog produkta
|−→a ×

−→
b | jest površina paralelograma koji razapinju vektori −→a i

−→
b .

Dokažimo ovu tvrdnju. Označimo s v visinu paralelograma i s ϕ =

∠(−→a ,
−→
b ) (vidi sliku 1.8.4). Iz pravokutnog trokuta OB′B dobivamo

da je

sinϕ =
v

|
−→
b |
⇒ v = |

−→
b |sinϕ,

pa je

P = |−→a |v = |−→a ||
−→
b |sinϕ = |−→a ×

−→
b |.

Naravno, površinu trokuta OAB možemo dobiti kao polovinu povr-
šine paralelograma.

Slika 1.8.4: Geometrijska interpretacija modula vektorskog produkta

Svojstva vektorskog produkta
Za sve vektore −→a ,

−→
b i −→c i za svaki realan broj λ vrijedi:

1. (λ−→a )×
−→
b = λ(−→a ×

−→
b )

2. (−→a +
−→
b ) × −→c = −→a × −→c +

−→
b × −→c (distributivnost vektor-

skog produkta s obzirom na zbrajanje)
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3. −→a ×
−→
b = −(

−→
b ×−→a ) (antikomutativnost vektorskog produkta).

Zadatak 22. Trokut ABC razapet je vektorima
−→
AB = 3−→p − 4−→q i

−→
AC =

−→p + 5−→q , pri čemu je |~p| = |−→q | = 2, ∠(−→p ,−→q ) = π
3 . Odredite površinu

trokuta ABC i visinu iz vrha C.

Rješenje:

Slika 1.8.5: Zadani elementi Zadatka 22

P4ABC =
1
2
|−→AB×−→AC| = 1

2
|(3−→p − 4−→q )× (−→p + 5−→q )|

=
1
2
|3−→p ×−→p + 15−→p ×−→q − 4−→q ×−→p − 20−→q ×−→q |

=
1
2
|15−→p ×−→q + 4−→p ×−→q | = 1

2
|19−→p ×−→q | = 19

2
|−→p ×−→q |

=
19
2
|−→p ||−→q |sin∠(−→p ,−→q ) =

19
2
· 2 · 2 · sin

π

3
= 19

√
3,

|−→AB| =
√
(3−→p − 4−→q )2 =

√
9−→p 2 − 24−→p −→q + 16−→q 2

=
√

9−→p 2 − 24−→p −→q + 16−→q 2 =

√
9|−→p |2 − 24|−→p ||−→q |cos

π

3
+ 16|−→q |2

=

√
9 · 4− 24 · 2 · 2 · 1

2
+ 16 · 4 =

√
52 = 2

√
13,

P4ABC =
|−→AB|vc

2
⇒ vc =

2P4ABC

|−→AB|
=

38
√

3
2
√

13
=

19
√

39
13

.

Vektorski produkt u pravokutnom koordinatnom sustavu
Neka je sad

(
O, (
−→
i ,
−→
j ,
−→
k )
)

desni pravokutni koordinatni sustav i
−→a = ax

−→
i + ay

−→
j + az

−→
k ,
−→
b = bx

−→
i + by

−→
j + bz

−→
k . Odredimo sad
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vektorski produkt vektora −→a i
−→
b pomoću komponenti tih vektora u

bazi (
−→
i
−→
j ,
−→
k ). Izračunajmo najprije vektorske produkte vektora baze.

Kako je
−→
i ||−→i ,

−→
j ||−→j i

−→
k ||
−→
k , onda uzimamo da je

−→
i ×−→i =

−→
0 ,

−→
j ×−→j =

−→
0 i
−→
k ×
−→
k =

−→
0 . Odredimo sad

−→
i ×−→j . Nad̄imo najprije

duljinu tog vektora:

|−→i ×−→j | = |−→i ||−→j |sin
π

2
= 1 · 1 · 1 = 1.

Kako je (
−→
i ×−→j ) ⊥ −→i i (

−→
i ×−→j ) ⊥ −→j (a ovo svojstvo ima i vektor

−→
k ) te su (

−→
i ,
−→
j ,
−→
i × −→j ) i (

−→
i ,
−→
j ,
−→
k ) obje desne baze, slijedi da

je
−→
i ×−→j kolinearan s vektorom

−→
k . Kako su oba vektora duljine

1, zaključujemo da je
−→
i ×−→j =

−→
k . Vektor

−→
j ×−→i bit će suprotno

orijentiran, pa je
−→
j ×−→i = −

−→
k . Tako dobivamo

−→
i ×−→i =

−→
0

−→
j ×−→i = −

−→
k

−→
k ×−→i =

−→
j

−→
i ×−→j =

−→
k

−→
j ×−→j =

−→
0

−→
k ×−→j = −−→i

−→
i ×
−→
k = −−→j −→

j ×
−→
k =

−→
i

−→
k ×
−→
k =

−→
0

iz čega slijedi da je

−→a ×
−→
b = (ax

−→
i + ay

−→
j + az

−→
k )× (bx

−→
i + by

−→
j + bz

−→
k )

= (aybz − azby)
−→
i − (axbz − azbx)

−→
j + (axby − aybx)

−→
k . (3)

Determinanta kvadratne matrice
Vektorski produkt vektora u pravokutnom koordinatnom sustavu mo-
žemo i jednostavnije računati koristeći determinante matrica 2. i 3.
reda. Kako bi objasnili pojam determinante, najprije uvodimo pojam
matrice.

Definicija 6: Pravokutnu tablicu oblika
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , m, n ∈N,

čiji su elementi realni brojevi, nazivamo realna matrica tipa m× n i
označavamo A ∈ Rmn Ako je m = n, tj. broj redaka je jednak broju
stupaca, takvu matricu nazivamo kvadratna matrica.
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Determinanta A 7→ detA funkcija je definirana na skupu svih kva-
dratnih matrica, a poprima vrijednosti iz skupa skalara. Osim oznake
detA za determinantu kvadratne matrice

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 ,

često se koristi i oznaka

detA =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ .

Determinanta matrice definira se induktivno, tj. determinanta matrice
n-tog reda definira se pomoću determinante matrice (n− 1)-og reda.

Ako je A = [a], onda je detA = a.
Ako je [

a11 a12

a21 a22

]

kvadratna matrica 2. reda, tada joj možemo pridružiti realan broj∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12

koji nazivamo determinanta kvadratne matrice 2. reda.
Realnoj matrici 3. reda a11 a12 a13

a21 a22 a23

a31 a32 a33



pridružujemo determinantu koju računamo na sljedeći način:∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
= a11(a22a33 − a32a23)− a12(a21a33 − a31a23) + a13(a21a32 − a31a22).
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Determinanta matrice

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann



reda n je broj

detA = a11detA11 − a12detA12 + · · ·+ (−1)n+1a1ndetA1n

=
n

∑
k=1

(−1)k+1a1ndetA1n.

Determinantu možemo računati tako da ju razvijemo po bilo kojem
retku ili stupcu, naime vrijedi sljedeći teorem:

Teorem 3. Laplaceov razvoj determinante
Neka je A ∈ Rnn, n ≥ 2. Tada je

det A =
n

∑
j=1

(−1)i+jaij det Aij, ∀i = 1, . . . , n, (4)

det A =
n

∑
i=1

(−1)i+jaij det Aij, ∀j = 1, . . . , n, (5)

gdje je Aij matrica (n− 1)-og reda koja nastaje uklanjanjem i-tog retka i
j-tog stupca originalne matrice A. Jednakost (3) se zove Laplaceov razvoj
po i-tom retku, a (4) se zove Laplaceov razvoj po j-tom stupcu.

Mi ćemo ovdje koristiti samo kvadratne matrice 2. i 3. reda.

Vektorski produkt vektora −→a = ax
−→
i + ay

−→
j + az

−→
k i

−→
b = bx

−→
i + by

−→
j + bz

−→
k zadanih u pravokutnom koordinatnom sus-

tavu možemo jednostavnije dobiti i na sljedeći način:

−→a ×
−→
b =

∣∣∣∣∣∣∣
−→
i
−→
j
−→
k

ax ay az

bx by bz

∣∣∣∣∣∣∣ =
−→
i
∣∣∣∣ay az

by bz

∣∣∣∣−−→j ∣∣∣∣ax az

bx bz

∣∣∣∣+−→k ∣∣∣∣ax ay

bx by

∣∣∣∣
= (aybz − azby)

−→
i − (axbz − azbx)

−→
j + (axby − aybx)

−→
k . (6)

Vidimo da je formula (6) jednaka formuli (3).

Zadatak 23. Odredite volumen paralelopipeda ABCDA′B′C′D′ ako su
A(3,−5, 2), B(1,−4, 1) i D(6,−2,−1) tri vrha osnovice i A′(5,−2, 1).
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Rješenje:

Slika 1.8.6: Rješenje Zadatka 23

Vektori dvaju susjednih bridova osnovice su
−→
AB = −2~i +~j −~k,

−→
AD = 3

−→
i + 3

−→
j − 3

−→
k . Računamo vektorski produkt

−→
AT =

−→
AB×−→AD =

∣∣∣∣∣∣∣
−→
i
−→
j
−→
k

−2 1 −1
3 3 −3

∣∣∣∣∣∣∣
=
−→
i
∣∣∣∣1 −1
3 −3

∣∣∣∣−−→j ∣∣∣∣−2 −1
3 −3

∣∣∣∣+−→k ∣∣∣∣−2 1
3 3

∣∣∣∣
=
−→
i (−3 + 3)−−→j (6 + 3) +

−→
k (−6− 3) = −9

−→
j − 9

−→
k .

Dakle, P =
∣∣∣−→AB×−→AD

∣∣∣ = √81 + 81 = 9
√

2.

Kako bismo dobili vektor visine −→v moramo napraviti vektorsku pro-

jekciju vektora
−−→
AA′ na vektor

−→
AT. Najprije nad̄imo vektor

−−→
AA′ =

2
−→
i + 3

−→
j −
−→
k . Imamo

−→v =

−→
AT
−−→
AA′

|−→AT|2
−→
AT =

−27 + 9
√

81 + 81
2 (−9

−→
j − 9

−→
k ) =

−→
j +
−→
k ,

pa je

|−→v | =
√

1 + 1 =
√

2.

Konačno je

V = P|−→v | = 9
√

2
√

2 = 18.

Zadatak 24. Zadane su točke A(4, 3,−2), B(3, 5, 1) i C(6, 2, 1) koje čine
bazu uspravne trostrane prizme. Odredite preostala tri vrha prizme ako je
duljina njene visine v =

√
19.
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Rješenje:

Slika 1.8.7: Rješenje Zadatka 24

Vektori stranica osnovice su
−→
AB = −−→i + 2

−→
j + 3

−→
k i
−→
AC = 2

−→
i −

−→
j + 3

−→
k . Sad ćemo izračunati vektorski produkt vektora osnovice

kako bismo dobili vektor okomit na osnovicu:

−→
AB×−→AC =

∣∣∣∣∣∣∣
−→
i
−→
j
−→
k

−1 2 3
2 −1 3

∣∣∣∣∣∣∣ =~i
∣∣∣∣ 2 3
−1 3

∣∣∣∣−~j ∣∣∣∣−1 3
2 3

∣∣∣∣+~k
∣∣∣∣−1 2

2 −1

∣∣∣∣
=
−→
i (6 + 3)−−→j (−3− 6) +

−→
k (1− 4) = 9

−→
i + 9

−→
j − 3

−→
k .

Njegova duljina je

∣∣∣−→AB×−→AC
∣∣∣ = √81 + 81 + 9 =

√
171 = 3

√
19

pa je

~v = (
−→
AB×−→AC)0|~v| =

9
−→
i + 9

−→
j − 3

−→
k

3
√

19
·
√

19 = 3
−→
i + 3

−→
j −
−→
k .

Sad dobivamo da je
−−→
OA′ =

−→
OA +

−−→
AA′ = 4

−→
i + 3

−→
j − 2

−→
k + 3

−→
i + 3

−→
j −
−→
k

= 7
−→
i + 6

−→
j − 3

−→
k ,

−→
OB′ =

−→
OB +

−→
BB′ = 3

−→
i + 5

−→
j +
−→
k + 3

−→
i + 3

−→
j −
−→
k = 6

−→
i + 8

−→
j ,

−−→
OC′ =

−→
OC +

−→
CC′ = 6

−→
i + 2

−→
j +
−→
k + 3

−→
i + 3

−→
j −
−→
k = 9

−→
i + 5

−→
j ,

pa je
A′ = (7, 6,−3), B′(6, 8, 0), C′(9, 5, 0).
Ovaj zadatak ima i drugo rješenje A′′, B′′, C′′ koje dobijemo ako
uzmemo suprotno orijentiran vektor visine −→v .
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1.9 mješoviti produkt vektora

Mješoviti produkt vektora −→a ,
−→
b i −→c realan je broj

−→c (−→a ×
−→
b ) = |−→c ||−→a ×

−→
b |cos∠(−→c ,−→a ×

−→
b )

= |−→c ||−→a ||
−→
b |sin∠(−→a ,

−→
b )cos∠(−→c ,−→a ×

−→
b ).

Geometrijska interpretacija mješovitog produkta
Skicirajmo paralelopiped razapet vektorima −→a ,

−→
b ,−→c kao na slici

1.9.1.
Iz pravokutnog trokuta OCC′ dobivamo da je

cosϕ =
v
|−→c |

⇒ v = |−→c |cosϕ.

Sad računamo mješoviti produkt −→c (−→a ×
−→
b ) te dobivamo

−→c (−→a ×
−→
b ) = |−→c ||−→a ×

−→
b |cosϕ = Pv = V,

gdje P označava površinu paralelograma OADB, a V volumen parale-
lopipeda. Time smo pokazali da preko mješovitog produkta vektora
−→a ,
−→
b i −→c možemo izračunati volumen paralelopipeda razapetog s

vektorima −→a ,
−→
b i −→c .

Slika 1.9.1: Mješoviti produkt vektora~a,~b i ~c

Kako kut ϕ izmed̄u vektora −→c i −→a ×
−→
b može poprimiti sve vrijed-

nosti izmed̄u 0 i π, kosinus tog kuta može biti i negativan, a onda i
volumen poprima negativnu vrijednost. Stoga za volumen V uzimamo
|−→c (−→a ×

−→
b )|.
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Ako imamo četverostranu piramidu razapetu s vektorima −→a ,
−→
b

i −→c , onda je njen volumen jednak 1
3 |
−→c (−→a ×

−→
b )| jer je volumen če-

tverostrane piramide 1
3 Pv. Volumen trostrane piramide, razapete s

vektorima −→a ,
−→
b i −→c , bit će 1

6 |
−→c (−→a ×

−→
b )| jer je površina baze jed-

naka 1
2 P = 1

2 |
−→a ×

−→
b |.

Možemo zaključiti da je mješoviti produkt vektora−→c · (−→a ×
−→
b ) = 0

ako i samo ako je barem jedan od vektora nul-vektor ili ako su vektori
komplanarni.

Neka su sad dani vektori −→a = ax
−→
i + ay

−→
j + az

−→
k ,

−→
b = bx

−→
i + by

−→
j + bz

−→
k i −→c = cx

−→
i + cy

−→
j + cz

−→
k u pravokutnom

koordinatnom sustavu
(

O, (
−→
i ,
−→
j ,
−→
k )
)

. Odredimo mješoviti produkt

tih vektora pomoću njihovih komponenti u bazi (
−→
i ,
−→
j ,
−→
k ):

−→c (−→a ×
−→
b )

= (cx
−→
i + cy

−→
j + cz

−→
k )
(
(aybz − azby)

−→
i − (axbz − azbx)

−→
j + (axby − aybx)

−→
k
)

= (aybz − azby)cx − (axbz − azbx)cy + (axby − aybx)cz.

Ovaj produkt najjednostavnije je izračunati koristeći determinantu
matrice 3. reda:

~c(~a×~b) =

∣∣∣∣∣∣
cx cy cz

ax ay az

bx by bz

∣∣∣∣∣∣ .

Zadatak 25. Vektori
−→
OA = −→a = 2

−→
i − 2

−→
j +
−→
k ,
−→
OB =

−→
b = 3

−→
i +

2
−→
k i
−→
OC = −→c = −−→i −−→j + 4

−→
k razapinju trostranu piramidu OABC.

Odredite volumen piramide i duljinu visine iz vrha C piramide.

Rješenje: Koristeći mješoviti produkt vektora odredimo volumen
piramide:

V = |1
6
~c(~a×~b)| = 1

6

∣∣∣∣∣∣
−1 −1 4
2 −2 1
3 0 2

∣∣∣∣∣∣
=

1
6

(
−1
∣∣∣∣−2 1

0 2

∣∣∣∣+ 1
∣∣∣∣2 1
3 2

∣∣∣∣+ 4
∣∣∣∣2 −2
3 0

∣∣∣∣)
=

1
6
[−1(−4− 0) + 1(4− 3) + 4(0 + 6)]

=
1
6
(4 + 1 + 24) =

29
6

.
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Sad nad̄imo vektorski produkt vektora~a i~b:

−→a ×
−→
b =

∣∣∣∣∣∣∣
−→
i
−→
j
−→
k

2 −2 1
3 0 2

∣∣∣∣∣∣∣ =~i
∣∣∣∣−2 1

0 2

∣∣∣∣−~j ∣∣∣∣2 1
3 2

∣∣∣∣+~k
∣∣∣∣2 −2
3 0

∣∣∣∣
= −4

−→
i −−→j + 6

−→
k .

Površina osnovice OAB iznosi

P =
1
2
|−→a ×

−→
b | =

√
16 + 1 + 36

2
=

√
53
2

.

Konačno, duljina visine je

V =
1
3

Pv⇒ v =
3V
P

=
29√
53

=
29
√

53
53

.

Zadatak 26. Odredite volumen paralelopipeda ABCDA′B′C′D′ ako su
A(3,−5, 2), B(1,−4, 1) i D(6,−2,−1) tri vrha osnovice i A′(5,−2, 1).

Rješenje: Ovaj zadatak smo već riješili koristeći samo vektorski
produkt (zadatak 23). Sad ga možete jednostavnije riješiti preko
mješovitog produkta vektora. Dakle, računamo mješoviti produkt

vektora
−→
AB,
−→
AD i

−−→
AA′. Traženo rješenje je V = 18.



2
A N A L I T I Č K A G E O M E T R I J A

U ovom poglavlju točke prostora prikazane su u pravokutnim ko-
ordinatama te pomoću njih dobivamo algebarske jednadžbe pravca
i ravnine u prostoru. Na taj način geometrijske zadaće rješavamo
algebarskim metodama.
Takod̄er, neki zadatci riješeni su i konstruktivno te je dana usporedba
analitičke metode rješavanja i metode nacrtne geometrije.

2.1 jednadžba ravnine

Neka je T0 točka i −→n 6= −→0 . Postoji samo jedna ravnina π koja
sadrži točku T0 i okomita je na vektor −→n . Vektor −→n nazivamo vektor
normale ravnine π. Vektor normale −→n ravnine π nije jedinstven.
Svaki vektor kolinearan s vektorom −→n takod̄er je vektor normale
ravnine π.

Slika 2.1.1: Jednadžba ravnine

Točka T je u ravnini π ako i samo ako je T = T0 ili
−→
T0T ⊥ −→n ,

a to vrijedi ako i samo ako je
−→
T0T−→n = 0. Zbog tog rezultata uvjet

−→
T0T−→n = 0 zovemo karakterizacija (jednadžba) ravnine π i pišemo

π . . .
−→
T0T−→n = 0.

Neka je
(

O, (
−→
i ,
−→
j ,
−→
k )
)

desni pravokutni koordinatni sustav,
−→n = A

−→
i + B

−→
j + C

−→
k , T0(x0, y0, z0) i T(x, y, z). Sad je

57
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−→
T0T = (x − x0)

−→
i + (y − y0)

−→
j + (z − z0)

−→
k , pa iz karakterizacije

(jednadžbe) ravnine π,
−→
T0T−→n = 0, dobivamo

π . . . A(x− x0) + B(y− y0) + C(z− z0) = 0. (7)

Ako sad označimo D = −Ax0 − By0 − Cz0, onda dobivamo jednakost

π . . . Ax + By + Cz + D = 0 (8)

koju zovemo opći oblik jednadžbe ravnine π.

Primjer 3. Skiciraj ravninu π zadanu jednadžbom π · · · − z + 3 = 0.

Rješenje:

Slika 2.1.2: Ravnina paralelna s ravninom xy

Primjer 4. Skiciraj ravninu π zadanu jednadžbom π . . . x− 3 = 0.

Rješenje:

Slika 2.1.3: Ravnina paralelna s ravninom yz
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Primjer 5. Skiciraj ravninu π zadanu jednadžbom π . . . y− 2 = 0.

Rješenje:

Slika 2.1.4: Ravnina paralelna s ravninom xz

Zadatak 27. Napiši opći oblik jednadžbe ravnine π koja prolazi točkom
T0(−1, 3, 2) i okomita je na vektor −→n = 2

−→
i − 3

−→
j +
−→
k .

Rješenje:

π . . . 2(x + 1)− 3(y− 3) + (z− 2) = 0

π . . . 2x + 2− 3y + 9 + z− 2 = 0

π . . . 2x− 3y + z + 9 = 0.

2.2 jednadžba pravca

Neka je dana točka T0 i vektor −→q 6= −→0 . Postoji točno jedan pravac p
koji sadrži točku T0 i ima smjer vektora −→q .
Točka T je na pravcu p ako i samo ako je vektor

−→
T0T kolinearan s

vektorom −→q , a to vrijedi ako i samo ako se vektor
−→
T0T može zapisati

kao
−→
T0T = t−→q , t ∈ R. Uvjet

−→
T0T = t−→q , t ∈ R

nazivamo karakterizacija (jednadnadžba) pravca p i pišemo

p . . .
−→
T0T = t~q, t ∈ R.
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Slika 2.2.1: Jednadžba pravca

Neka je
(

O, (
−→
i ,
−→
j ,
−→
k )
)

desni pravokutni koordinatni sustav,
−→q = a

−→
i + b

−→
j + c

−→
k , T0(x0, y0, z0) i T(x, y, z). Sad je

−→
T0T = (x− x0)

−→
i + (y− y0)

−→
j + (z− z0)

−→
k , pa iz uvjeta

−→
T0T = t−→q ,

t ∈ R dobivamo jednakosti

p =


x− x0 = at

y− y0 = bt

z− z0 = ct, t ∈ R,

(9)

koje zovemo parametarska jednadžba pravca p. Eliminacijom para-
metra t dobivamo

p . . .
x− x0

a
=

y− y0

b
=

z− z0

c
(10)

kanonski oblik jednadžbe pravca p.

Zadatak 28. Točkom T(−2, 2, 3) i pravcem p . . . x−1
2 = y−1

3 = z+1
1 posta-

vite ravninu.

Rješenje:

Slika 2.2.2: Rješenje zadatka 28

Uzmimo neku točku pravca p, npr. P(1, 1,−1). Sad je
−→
PT = −3

−→
i +
−→
j + 4

−→
k . Vektor normale ravnine π dobijemo kao
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vektorski produkt vektora smjera −→q = 2
−→
i + 3

−→
j +
−→
k pravca p i

vektora
−→
PT:

−→
PT×−→q =

∣∣∣∣∣∣∣
−→
i
−→
j
−→
k

−3 1 4
2 3 1

∣∣∣∣∣∣∣ = −11
−→
i + 11

−→
j − 11

−→
k = −11(

−→
i −−→j +

−→
k ).

Dakle, −→n =
−→
i −−→j +

−→
k , pa je π . . . x− y + z + 1 = 0.

Zadatak 29. Postavite ravninu kroz pravce
p1 . . . x−1

2 = y−1
3 = z+2

−1 i p2 . . . x
2 = y−1

3 = z−3
−1 .

Rješenje:

Slika 2.2.3: Rješenje zadatka 29

Vidimo da su pravci p1 i p2 paralelni (jer su im jednaki vektori
smjera −→q1 = −→q2 = 2

−→
i + 3

−→
j −
−→
k ) pa odred̄uju ravninu. Kako bismo

napisali jednadžbu ravnine moramo odrediti vektor normale. Vektor
normale dobivamo kao vektorski produkt dva vektora ravnine s tim
da ne možemo uzeti vektore smjera pravaca p1 i p2 jer su to kolinearni
vektori pa je njihov vektorski produkt jednak nulvektoru.
Uzmimo vektor smjera pravca p1 (ili pravca p2)
−→q1 = 2

−→
i + 3

−→
j −
−→
k te točku A(1, 1,−2) pravca p1 i točku B(0, 1, 3)

pravca p2. Sad je
−→
AB = −−→i + 5

−→
k , pa je

−→q1 ×
−→
AB =

∣∣∣∣∣∣∣
−→
i
−→
j
−→
k

2 3 −1
−1 0 5

∣∣∣∣∣∣∣ = 15
−→
i − 9

−→
j + 3

−→
k = 3(5

−→
i − 3

−→
j +
−→
k ).

Jednadžba ravnine π sad glasi

π . . . 5(x− 1)− 3(y− 1) + z + 2 = 0

π . . . 5x− 3y + z = 0.



62 analitička geometrija

Zadatak 30. Odredite jednadžbu ravnine π zadane točkama A(5, 4,−5),
B(3, 2,−3) i C(5, 3,−4).

Rješenje:

Slika 2.2.4: Rješenje zadatka 30

Odredimo vektore
−→
AB = −2

−→
i − 2

−→
j + 2

−→
k i
−→
AC = −−→j +

−→
k .

Vidimo da dobiveni vektori nisu kolinearni pa odred̄uju ravninu.
Odredimo vektor normale ravnine π

−→
AB×−→AC =

∣∣∣∣∣∣∣
−→
i
−→
j
−→
k

−2 −2 2
0 −1 1

∣∣∣∣∣∣∣ = 2
−→
j + 2

−→
k .

Sad je jednadžba ravnine π jednaka

π . . . 2(y− 4) + 2(z + 5) = 0

π . . . 2y + 2z + 2 = 0/ : 2⇒ π . . . y + z + 1 = 0.

Zadatak 31. Na pravcu p . . . x+3
1 = y+1

2 = z−2
−2 nad̄ite točku jednako

udaljenu od probodišta pravca s ravninama

π1 · · · − x + y− z + 2 = 0,

π2 . . . x− y− z− 2 = 0.

Rješenje: Skicirajmo traženo rješenje. Iz jednadžbi vidimo da rav-
nine nisu paralelne. Trebamo pronaći probodište pravca p i zadanih
ravnina. Tražena točka je polovište dobivenih probodišta.
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Slika 2.2.5: Rješenje zadatka 31

Zapišimo pravac p u parametarskom obliku. Dobivamo

p =


x = t− 3

y = 2t− 1

z = −2t + 2.

Sad pravac uvrštavamo u jednadžbe ravnina kako bismo dobili probo-
dišta:

p ∩ π1 · · · − t + 3 + 2t− 1 + 2t− 2 + 2 = 0

t = −2
3
⇒ B(−11

3
,−7

3
,

10
3
),

p ∩ π2 . . . t− 3− 2t + 1 + 2t− 2− 2 = 0

t = 6⇒ A(3, 11,−10).

Sad je polovište

P

(
− 11

3 + 3
2

,
− 7

3 + 11
2

,
10
3 − 10

2

)
= P

(
−1

3
,

13
3

,−10
3

)
.

Zadatak 32. Neka je dan pravac p . . . x+1
1 = y−1

0 = z−2
2 i ravnina π . . . x +

2y− z + 2 = 0. Odredite ortogonalnu projekciju p′ pravca p u ravninu π

te pravac p′′ simetričan pravcu p s obzirom na ravninu π.
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Rješenje:

Slika 2.2.6: Rješenje zadatka 32

Odredimo najprije probodište pravca p i ravnine π. Zapišimo pravac
p u parametarskom obliku

p =


x = t− 1

y = 1

z = 2t + 2, t ∈ R,

te ga sad uvrstimo u jednadžbu ravnine π:

t− 1 + 2− 2t− 2 + 2 = 0

⇒ −t + 1 = 0

t = 1.

Dobivamo da je probodište pravca p i ravnine π točka P(0, 1, 4). Kako
bismo odredili vektor smjera pravca p′, najprije po formuli (2) izra-
čunajmo vektorsku projekciju −→x vektora smjera pravca p na vektor
normale ravnine π. Imamo da je −→q =

−→
i + 2

−→
k te −→n =

−→
i + 2

−→
j −
−→
k

pa je

−→x =
−→q −→n
|−→n |2

−→n =
1 + 0− 2
√

1 + 4 + 1
2 (
−→
i + 2

−→
j −
−→
k )

= −1
6
(
−→
i + 2

−→
j −
−→
k ).

Sad je
−→
q′ = −→q −−→x =

−→
i + 2

−→
k +

1
6
(
−→
i + 2

−→
j −
−→
k )

=
7
6
−→
i +

1
3
−→
j +

11
6
−→
k ,
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−→
q′′ = −→q − 2−→x =

−→
i + 2

−→
k +

1
3
(
−→
i + 2

−→
j −
−→
k )

=
4
3
−→
i +

2
3
−→
j +

5
3
−→
k ,

pa je

p′ . . .
6x
7

=
3(y− 1)

1
=

6(z− 4)
11

,

p′′ . . .
3x
4

=
3(y− 1)

2
=

3(z− 4)
5

.

Zadatak 33. Odredite jednadžbu ravnine π s obzirom na koju su ravnine
π1 . . . 2x − y + 2z− 2 = 0 i π2 · · · − 4x + 2y− 4z + 3 = 0 med̄usobno
simetrične. Takod̄er, odredite udaljenost ravnina π1 i π2.

Rješenje: Uočimo da su ravnine π1 i π2 med̄usobno paralelne jer je
−→n1 = 2

−→
i −−→j + 2

−→
k , −→n2 = −4

−→
i + 2

−→
j − 4

−→
k te je −→n2 = −2−→n1 .

Slika 2.2.7: Rješenje zadatka 33

Uzmimo točku T1 ∈ π1 te njome postavimo pravac okomit na
ravnine π1 i π2. Odaberimo proizvoljno 2 koordinate, npr. x = 0 i
y = 0. Ako ih uvrstimo u jednadžbu ravnine π1 dobivamo da je z = 1.
Dakle, točka T1 ima koordinate T1(0, 0, 1) pa je jednadžba pravca p

p =


x = 2t

y = −t

z = 2t + 1, t ∈ R.
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Odredimo probodište T2 pravca p i ravnine π2:

− 8t− 2t− 4(2t + 1) + 3 = 0

⇒ t = − 1
18

⇒ T2(−
1
9

,
1
18

,
8
9
).

Polovište P dužine T1T2 ima koordinate P
(
− 1

18 , 1
36 , 17

18

)
pa je jednadžba

ravnine π

π . . . 2
(

x +
1
18

)
−
(

y− 1
36

)
+ 2

(
z− 17

18

)
= 0

π . . . 2x− y + 2z− 7
4
= 0.

Udaljenost ravnina π1 i π2 dobijemo tako da izračunamo udaljenost
točaka T1 i T2:

d =

√(
0 +

1
9

)2

+

(
0− 1

18

)2

+

(
1− 8

9

)2

=

√
1
81

+
1

324
+

1
81

=

√
9

324
=

1
6

.

Skup svih točaka prostora koje su jednako udaljene od dviju ravnina
π1 i π2 leže u jednoj ravnini koju nazivamo simetralnom ravninom
ravnina π1 i π2.
Vektore normala −→n i

−→
n′ simetralnih ravnina dobivamo kao vektore

simetrala kuteva koje zatvaraju vektori normala ravnina π1 i π2 tj.

−→n =
−→n1

|−→n1 |
+
−→n2

|−→n2 |
,

−→
n′ =

−→n1

|−→n1 |
+
−→n2

|−→n2 |
.

Zadatak 34. Odredite jednadžbe ravnina s obzirom na koje su ravnine
π1 . . . x − y + 2z + 1 = 0 i π2 . . . 2x − 3y + z + 1 = 0 med̄usobno sime-
trične (simetralne ravnine ravnina π1 i π2). Takod̄er, odredite kut izmed̄u
ravnina π1 i π2.
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Rješenje:

Slika 2.2.8: Rješenje zadatka 34

Najprije odredimo jednu točku pravca presječnice ravnina π1 i π2.
Uzmimo npr. da je koordinata x = 0 te riješimo sustav:

− y + 2z + 1 = 0

− 3y + z + 1 = 0.

Dobivamo y = 1
5 i z = − 2

5 te je T(0, 1
5 ,− 2

5 ) ∈ π1 ∩ π2.
Vektore normala simetralnih ravnina dobivamo kao vektore simetrala
kuteva koje zatvaraju vektori normala ravnina π1 i π2 pa je

−→n =
−→n1

|−→n1 |
+
−→n2

|−→n2 |

=

−→
i −−→j + 2

−→
k√

6
+

2
−→
i − 3

−→
j +
−→
k√

14

=
(
√

7 + 2
√

3)
−→
i + (−

√
7− 3

√
3)
−→
j + (2

√
7 +
√

3)
−→
k√

42

i

−→
n′ =

−→n1

|−→n1 |
−
−→n2

|−→n2 |

=

−→
i −−→j + 2

−→
k√

6
− 2
−→
i − 3

−→
j +
−→
k√

14

=
(
√

7− 2
√

3)
−→
i + (−

√
7 + 3

√
3)
−→
j + (2

√
7−
√

3)
−→
k√

42
.
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Tražene ravnine su

π . . . (
√

7 + 2
√

3)x + (−
√

7− 3
√

3)y + (2
√

7 +
√

3)z +
√

7 +
√

3 = 0

i

π′ . . . (
√

7− 2
√

3)x + (−
√

7 + 3
√

3)y + (2
√

7−
√

3)z +
√

7−
√

3 = 0.

Kut izmed̄u ravnina π1 i π2 jednak je kutu izmed̄u njihovih vektora
normala pa imamo

cos∠(−→n1 ,−→n2 ) =
|−→n1
−→n2 |

|−→n1 ||−→n2 |
=
|(−→i −−→j + 2

−→
k )(2

−→
i − 3

−→
j +
−→
k )|√

6
√

14

=
7√
84

=

√
84

12
=

√
21
6

⇒ ∠(−→n1 ,−→n2 ) = 40◦12′11′′.

Zadatak 35. Odredite udaljenost točke T(2,−3, 4) od ravnine
π . . . 2x− y + z + 1 = 0.

Rješenje:

Slika 2.2.9: Rješenje zadatka 35

Točkom T postavimo okomicu na ravninu π. Dakle, vektor smjera
−→q okomice p bit će jednak vektoru normale −→n ravnine π:

−→q = −→n = 2
−→
i −−→j +

−→
k .
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Sad je jednadžba pravca p.

p =


x = 2t + 2

y = −t− 3

z = t + 4, t ∈ R.

Odredimo probodište pravca p i ravnine π:

2(2t + 2)− (−t− 3) + t + 4 + 1 = 0

⇒ 4t + 4 + t + 3 + t + 4 + 1 = 0

⇒ 6t + 12 = 0⇒ t = −2

pa je P(−2,−1, 2). Sad je udaljenost d točke T od ravnine π jednaka

d(T, P) =
√
(2 + 2)2 + (−3 + 1)2 + (4− 2)2

=
√

16 + 4 + 4 =
√

24 = 2
√

6.

Zadatak 36. Odredite točke pravca p . . . x+ 7
3

1 = y
−2 = z−3

0 jednako udaljene
od ravnina π1 · · · − x + 2y− 2z + 3 = 0 i π2 · · · − 2x + y + 2z− 1 = 0.
Koliko iznose udaljenosti tih točaka od ravnina π1 i π2?

Rješenje:

Slika 2.2.10: Rješenje zadatka 36

Točke pravca p jednako udaljene od ravnina π1 i π2 dobivamo kao
probodišta pravca p sa simetralnim ravninama ravnina π1 i π2.
Za odrediti simetralne ravnine najprije odredimo jednu točku pravca
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presječnice ravnina π1 i π2. Uzmimo npr. da je koordinata x = 0 te
riješimo sustav:

2y− 2z + 3 = 0

y + 2z− 1 = 0.

Dobivamo y = − 2
3 i z = 5

6 te je T(0,− 2
3 , 5

6 ) ∈ π1 ∩ π2.
Vektore normala simetralnih ravnina dobivamo kao vektore simetrala
kuteva koje zatvaraju vektori normala ravnina π1 i π2 pa je

−→
n′ =

−→n1

|−→n1 |
+
−→n2

|−→n2 |

=
−−→i + 2

−→
j − 2

−→
k

3
+
−2
−→
i +
−→
j + 2

−→
k

3
= −−→i +

−→
j ,

−→n =
−→n1

|−→n1 |
−
−→n2

|−→n2 |

=
−−→i + 2

−→
j − 2

−→
k

3
+

2
−→
i −−→j − 2

−→
k

3
=

−→
i +
−→
j − 4

−→
k

3
.

Tražene ravnine su

π′ · · · − x + y +
2
3
= 0,

π . . . x + y− 4z + 4 = 0.

Odredimo probodišta pravca p s ravninama π′ i π:

−(t− 7
3
)− 2t +

2
3
= 0⇒ t = 1

pa je P(− 4
3 ,−2, 3),

t− 7
3
− 2t− 12 + 4 = 0

⇒ t = −31
3

pa je Q(− 38
3 , 62

3 , 3).
Udaljenosti točke Q od ravnina π1 i π2 dobijemo tako da točkom
Q postavimo okomicu o na jednu od ravnina, npr. π1 te tražimo
probodište okomice i ravnine. Dobivamo da je jednadžba okomice o

jednaka o . . . x+ 38
3

−1 =
y− 62

3
2 = z−3

−2 , a onda je traženo probodište točka
Q1(−7, 28

3 , 43
3 ).

Sad je udaljenost d točke Q od ravnine π1 jednaka

d(Q, Q1) =

√(
−7 +

38
3

)2

+

(
28
3
− 62

3

)2

+

(
43
3
− 3
)2

= 17.
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Zadatak 37. Odredite udaljenost točke T(2, 2,−3) od pravca p . . . x+2
1 =

y−2
2 = z−1

3 .

Rješenje:

Slika 2.2.11: Rješenje zadatka 37

Postavimo ravninu π točkom T okomito na pravac p:

π . . . (x− 2) + 2(y− 2) + 3(z + 3) = 0

π . . . x + 2y + 3z + 3 = 0.

Sad odredimo probodište pravca p i ravnine π. Zapišimo pravac p u
parametarskom obliku

p =


x = t− 2

y = 2t + 2

z = 3t + 1, t ∈ R,

uvrstimo ga u jednadžbu ravnine π, pa dobivamo

t− 2 + 2(2t + 2) + 3(3t + 1) + 3 = 0

t = −4
7

pa je probodište P
(
− 18

7 , 6
7 ,− 5

7

)
. Udaljenost točke T do pravca p jed-

naka je udaljenosti točaka T i P, a ta udaljenost iznosi:

d(T, P) =

√(
2 +

18
7

)2

+

(
2− 6

7

)2

+

(
−3 +

5
7

)2

=

√
1344

49
=

8
√

21
7

.
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Zadatak 38. Odredite kut izmed̄u pravca p . . . x
3 = y−1

−2 = z−1
3 i ravnine

π . . . x− y + 2z− 3 = 0.

Rješenje:

Slika 2.2.12: Rješenje zadatka 38

Kut izmed̄u pravca p i ravnine π jednak je kutu izmed̄u pravca i
njegove ortogonalne projekcije u tu ravninu.
Vidimo da je taj kut ϕ′ jednak ϕ′ = π

2 − ϕ, gdje je ϕ = ∠(−→q ,−→n ).

~q = 3~i − 2~j + 3~k je vektor smjera pravca p, a −→n =
−→
i − −→j + 2

−→
k

vektor normale ravnine π. Sad je

cosϕ =
|−→q −→n |
|−→q ||−→n |

=
3 + 2 + 6√

9 + 4 + 9
√

1 + 1 + 4
⇒ ϕ = 16◦46′43′′

⇒ ∠(p, p′) = 73◦13′17′′.

Zadatak 39. Odredite pravac q koji prolazi točkom T(3, 2, 5), siječe pravac
p . . . x−1

2 = y−1
1 = z−2

1 i paralelan je s ravninom π . . . x− y + 2z− 2 = 0.
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Rješenje:

Slika 2.2.13: Rješenje zadatka 39

Točkom T postavimo ravninu π′ paralelnu s ravninom π. Kako su
ravnine paralelne, imaju isti vektor normale pa je
−→
n′ = −→n =

−→
i −−→j + 2

−→
k . Sad je

π′ . . . x− 3− (y− 2) + 2(z− 5) = 0

⇒ π′ . . . x− y + 2z− 11 = 0.

Odredimo probodište pravca p i ravnine π′. Napišimo pravac p u
parametarskom obliku

p =


x = 2t + 1

y = t + 1

z = t + 2, t ∈ R

te ga uvrstimo u jednadžbu ravnine π′

2t + 1− (t + 1) + 2(t + 2)− 11 = 0

⇒ t =
7
3

.

Probodište P ima koordinate P
( 17

3 , 10
3 , 13

3

)
. Dakle, vektor smjera pravca

q je

−→
PT = −8

3
−→
i − 4

3
−→
j +

2
3
−→
k

pa jednadžba pravca q glasi

q =


x = − 8

3 t + 3

y = − 4
3 t + 2

z = 2
3 t + 5, t ∈ R.



74 analitička geometrija

Zadatak 40. Točkom T(−1, 1, 0) postavite pravac p koji siječe pravac p1 . . . x−1
1 =

y
2 = z+1

1 i čiji je vektor smjera okomit na vektor smjera pravca p2 . . . x−2
1 =

y−1
1 = z

−1 .

Rješenje:

Slika 2.2.14: Rješenje zadatka 40

Postavimo ravninu π točkom T okomito na pravac p2. Dakle, vektor
smjera −→q2 pravca p2 normala je ravnine π čija jednadžba glasi
π . . . x + y− z = 0. Pronad̄imo probodište pravca p1 i ravnine π. Kako
je

p1 =


x = t + 1

y = 2t

z = t− 1, t ∈ R,

dobivamo t + 1 + 2t− (t− 1) = 0, iz čega je t = −1 pa je probodište
P(0,−2,−2). Vektor smjera pravca p je
−→
TP =

−→
i − 3

−→
j − 2

−→
k pa je p . . . x+1

1 = y−1
−3 = z

−2 .

Zadatak 41. Visina uspravnog stošca je na pravcu p . . . x−1
1 = y+1

2 = z
1 ,

točka V(3, 3, 2) vrh je stošca, a točka T(3,−2, 0) na obodnoj je kružnici baze
stošca. Odredite koordinate središta S osnovice te volumen stošca.
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Rješenje:

Slika 2.2.15: Rješenje zadatka 41

Postavimo ravninu točkom T okomito na pravac p. Dakle, vektor
normale ravnine je −→n =

−→
i + 2

−→
j +
−→
k pa njena jednadžba glasi

π . . . x + 2y+ z+ 1 = 0. Sad odredimo probodište S pravca p i ravnine
π. Pravac p zapišemo u parametarskom obliku

p =


x = t + 1

y = 2t− 1

z = t, t ∈ R,

uvrstimo u jednadžbu ravnine te dobivamo t = 0. Koordinate točke S
glase S(1,−1, 0).
Volumen stošca računamo

r = d(S, T) =
√
(1− 3)2 + (−1 + 2)2 =

√
5,

v = d(S, V) =
√
(3− 1)2 + (3 + 1)2 + (2− 0)2 = 2

√
6,

V =
1
3

r2πv =
10
√

6π

3
.





D O D ATA K : P O V E Ž I M O A N A L I T I Č K U I N A C RT N U
G E O M E T R I J U

Ovaj udžbenik prvenstveno je namijenjen studentima Studija arhitek-
ture i urbanizma te Studiju dizajna koji na početku svog fakultetskog
obrazovanja slušaju i kolegije nacrtne geometrije. Nerijetko se do-
gad̄a da studenti ne uočavaju poveznicu izmed̄u sadržaja analitičke
geometrije obrad̄ene u prethodnom poglavlju i tog istog sadržaja pro-
matranog ”očima” nacrtne geometrije. Općenito, prema načinu na koji
rješavamo geometrijske probleme, geometriju dijelimo na:

• analitičku geometriju (alat: algebra)

• diferencijalnu geometriju (alat: diferencijalni račun)

• sintetičku geometriju (alat: logično zaključivanje i prostorni zor)

• nacrtna geometrija (alat: konstruktivno rješavanje metodama
projiciranja).

Podsjećamo da je proučavanje geometrije nužno za razvijanje prostor-
nog zora i razumijevanje računalnih 3D programa. U ovom dodatku
riješit ćemo nekoliko metričkih zadaća metodama ortogonalnog pro-
jiciranja. Te iste zadaće obrad̄ene su u prethodnom poglavlju na
algebarski način. Dakle, promatramo iste metričke probleme iz dva
različita kuta. Pri rješavanju alatima nacrtne geometrije pretpostavlja
se osnovno znanje ortogonalnog projiciranja. Napominjemo da se u
analitičkoj geometriji koristi desni koordinatni sustav, a u nacrtnoj
lijevi koordinatni sustav.

2.a osnovni elementi

U nacrtnoj geometriji uvodeći bilo koju metodu projiciranja proma-
tramo tri osnovna geometrijska elementa: točku, pravac, ravnina te
njihove odnose.

2.a.1 Točka

Kod metode ortogonalnog projiciranja prostornih figura i odnosa
med̄u njima, projiciramo okomitim zrakama na tri medusobno oko-
mite ravnine Π1, Π2, Π3 (vidi sliku 2.A.1a). Koordinatne osi lijevog
koordinatnog sustava su

Π1 ∩Π2 ≡ x, Π1 ∩Π3 ≡ y, Π2 ∩Π3 ≡ z.

77
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Točka T zadana je koordinatama (x, y, z), gdje x - koordinata pred-
stavlja udaljenost točke T od ravnine Π3, y - koordinata udaljenost od
ravnine Π2 i z - koordinata udaljenost točke T od ravnine Π1. Okomite
projekcije točke T na ravnine Π1,Π2,Π3 s oznakama T′,T′′,T′′′ su tlocrt,
nacrt i bokocrt točke. Ortogonalna projekcija točke T prikazana je na
slici 2.A.1b.

(a) Koordinatni sustav i prostorni prikaz
točke T (b) Ortogonalne projekcije točke T

Slika 2.A.1: Točka T

2.a.2 Pravac

Pravac p u ortogonalnoj projekciji, kao i u prostoru, odred̄en je dvjema
točkama. Naravno, incidencija se čuva u ortogonalnim projekcijama.
Za pravac p u ortogonalnim projekcijama vezuju se dvije bitne točke,
P1 i P2. S P1 označavamo prvo probodište pravca, tj. probodište pravca
p s ravninom Π1, a s P2 drugo probodište pravca, tj. probodište pravca
p s ravninom Π2. Pravac u prostoru prikazan je na slici 2.A.2a, a
njegova ortogonalna projekcija na 2.A.2b.

(a) Pravac p u prostoru (b) Pravac p u ortogonalnim projekcijama

Slika 2.A.2: Pravac p

2.a.3 Ravnina

Promotrimo opću ravninu P u prostoru, vidi sliku 2.A.3a. U ortogo-
nalnim projekcijama ravnina je odred̄ena svojim tragovima, prvim i
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drugim tragom. Prvi trag ravnine je presječnica ravnine P i tlocrtne
ravnine Π1, a drugi trag ravnine je presječnica ravnine P i nacrtne
ravnine Π2.

Na slici 2.A.3b prikaz je ravnine u ortogonalnim projekcijama.

(a) Ravnina u prostoru (b) Tragovi ravnine

Slika 2.A.3: Prikaz ravnine

Opis slike 2.A.3b:

1. r1 = P ∩Π1, r1 je prvi trag ravnine P

2. r2 = P ∩Π2, r2 je drugi trag ravnine P

3. r1 ∩ r2 ∈ x.

Ravnine okomite na Π1, odnosno, na Π2 su projicirajuće ravnine i
prikazane su na slikama 2.A.4a i 2.A.4b.

(a) Prva projicirajuća ravnina (b) Druga projicirajuća ravnina

Slika 2.A.4: Projicirajuće ravnine

Točka leži na pravcu ako i samo ako projekcije točke leže na odgovarajućim
projekcijama pravca.
Pravac leži u ravnini ako i samo ako probodišta pravca leže na istoimenim
tragovima te ravnine, tj. P1 ∈ r1 i P2 ∈ r2.
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(a) Pravac u ravnini
(b) Pravac u ravnini - ortogonalne

projekcije

Slika 2.A.5: Pravac u ravnini

Horizontalni i frontalni pravci u ravnini primjer su pravaca rav-
nine u posebnom položaju:

(a) Horizontalni pravac u ravnini -
ortogonalna projekcija

(b) Frontalni pravac u ravnini -
ortogonalna projekcija

Slika 2.A.6: Horizontalni i frontalni pravci u ravnini

2.a.4 Presječnica dviju ravnina

Zajednički pravac dviju ravnina zove se presječnica ravnina.
Pravac će biti presječnica dviju ravnina ako i samo ako probodišta
pravca leže na tragovima tih ravnina, vidi sliku 2.A.7a.
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(a) Presječnica dviju ravnina
(b) Presječnica dviju ravnina - ortogonalne

projekcije

Slika 2.A.7: Presječnica dviju ravnina

Za prikaz presječnice u ortogonalnoj projekciji (slika 2.A.7b) vrijedi:

1. P1 ∈ r1, P1 ∈ s1 ⇒ P1 = r1 ∩ s1 ∧ P′′1 ∈ x

2. P2 ∈ r2, P2 ∈ s2 ⇒ P2 = r2 ∩ s2 ∧ P′2 ∈ x

3. p′ = P1P′2 ∧ p′′ = P′′1 P2.

2.a.5 Probodište pravca i ravnine

Zajednička točka ravnine P i pravca p zove se probodište pravca i
ravnine.
Da bismo našli p ∩ P = N i u prostornom prikazu (slika 2.A.8a) i u
ortogonalnim projekcijama (slika 2.A.8b), radimo isti postupak:

1. Pravcem p postavljamo pomoćnu ravninu ∆, u slučaju ortogo-
nalnog projiciranja ravninu ∆ biramo okomitu na Π1 ili Π2.

2. Odredimo presječnicu q pomoćne ravnine ∆ i polazne ravnine P.

3. Sjecište pravca p i presječnice q je traženo probodište N.

U ortogonalnim projekcijama to se svodi na sljedeće:

1. p ⊂ ∆(d1, d2), npr. ∆(d1, d2)⊥Π2 ⇒ d2 ≡ p′′, d1⊥x

2. ∆(d1, d2) ∩ P(r1, r2) = q, q′′ ≡ d2, q′ ≡ Q1Q′2

3. p ∩ q = N ⇒ p′ ∩ q′ = N′, N′′ ∈ p′′.
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(a) Probodište pravca i ravnine
(b) Probodište pravca i ravnine -

ortogonalne projekcije

Slika 2.A.8: Probodište pravca i ravnine

2.a.6 Pravac okomit na ravninu

Pravac n okomit je na ravninu P ako je okomit na barem dva, a onda i
na sve pravce te ravnine (slika 2.A.9a).
Pravac n nazivamo okomicom ili normalom. U ortogonalnim projekci-
jama (slika 2.A.9b) vrijedi

n⊥P(r1, r2) ⇒ n′⊥r1 ∧ n′′⊥r2.

(a) Pravac okomit na ravninu
(b) Pravac okomit na ravninu -

ortogonalne projekcije

Slika 2.A.9: Pravac okomit na ravninu

2.b metrički zadatci

2.b.1 Udaljenost dviju točaka

Vidi Poglavlje 1.7, sliku 1.7.2.
Ako tražimo prostornu udaljenost dviju točaka A i B (slika 2.B.1a)
tada u ortogonalnim projekcijama rotiramo trapez ABB′A′ oko A′B′ u
Π1 ili trapez ABB′′A′′ oko A′′B′′ u ravninu Π2 (slika 2.B.1b).
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(a) Udaljenost dviju točaka (b) Prava veličina udaljenosti dviju točaka

Slika 2.B.1: Udaljenost dviju točaka

2.b.2 Udaljenost točke od ravnine

Vidi Zadatak 35, sliku 2.2.9.
Odredite udaljenost točke T od ravnine P, T /∈ P.

(a) Udaljenost točke od ravnine

x

r 1

r 2 n'' ≡ q'' ≡

n'

d2

d1 q'

T0
N0

T''

T'

N''

N'

(b) Udaljenost točke od ravnine -
ortogonalne projekcije

Slika 2.B.2: Udaljenost točke od ravnine

Prostorno rješenje:

1. T ∈ n, n ⊥ P (vidi 2.A.6 Pravac okomit na ravninu)

2. n ∩ P = N (vidi 2.A.5 Probodište pravca i ravnine)

3. d(T, N) (vidi 2.B.1 Udaljenost dviju točaka).

Svaki od ovih koraka riješen je u prethodnim promatranjima. Prikaz
takvog rješenja u ortogonalnim projekcijama dan je na slici 2.B.2b.

2.b.3 Udaljenost točke od pravca

Vidi zadatak 37 i sliku 2.2.11.
Odredite udaljenost točke od pravca, T /∈ p.
Kod prostornog rješenja spustimo normalu iz točke T na pravac p.
Takvo rješenje nije moguće u ortogonalnim projekcijama osim u speci-
jalnim slučajevima. Stoga radimo sljedeće:
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1. T ∈ Σ, Σ ⊥ p

2. p ∩ Σ = P

3. d(T, p) = d(T, P).

Kako postaviti točkom T ravninu Σ okomito na pravac p?

1. a) T ∈ h, h ‖ Π1, h ∈ Σ(s1, s2) ⇒ T′ ∈ h′, h′⊥p′ ∧ T′′ ∈
h′′, h′′ ‖ x (vidi sliku 2.A.6a)

b) H′2 = h′ ∩ x ∧ H′′2 ∈ h′′

c) H′′2 ∈ s2 ∧ s2⊥p′′, s1⊥p′.

2. p ∩ Σ(s1, s2) = P (vidi 2.A.5 Probodište pravca i ravnine)

3. d(T, p) = d(T, P) (vidi 2.B.1 Udaljenost dviju točaka).

(a) Udaljenost točke od pravca
(b) Udaljenost točke od pravca -

ortogonalne projekcije

Slika 2.B.3: Udaljenost točke od pravca

Studentima prepuštamo da pronad̄u još poveznica.
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E L E M E N TA R N E F U N K C I J E

Definicija 7: Funkcija ili preslikavanje ured̄ena je trojka (D, K, f ) koja
sadrži skup D koji nazivamo područje definicije ili domena funkcije,
skup K koji nazivamo područje vrijednosti ili kodomena funkcije
i neko pravilo f : D → K po kojem se svakom x ∈ D pridružuje
jedinstveni y ∈ K takav da je y = f (x).

Definicija 8: Slika funkcije je skup

R( f ) = { f (x) : x ∈ D} ⊆ K.

Definicija 9: Skup

Γ( f ) = {(x, f (x)) : x ∈ D}

nazivamo graf funkcije f .

Definicija 10: Za funkciju f : D → K kažemo da je surjekcija ako za
svaki y ∈ K postoji barem jedan x ∈ D takav da je f (x) = y. Drugim
riječima, funkcija f je surjekcija ako je slika funkcije jednaka kodomeni.
Za funkciju f : D → K kažemo da je injekcija ako vrijedi sljedeće:

za sve x1, x2 ∈ D, x1 6= x2 ⇒ f (x1) 6= f (x2).

Za funkciju f : D → K kažemo da je bijekcija ako je funkcija surjekcija
i injekcija.

Definicija 11: Neka su f : A → B i g : C → D dvije funkcije. Ako je
R( f ) ⊆ C, tada je jedinstveno odred̄ena funkcija h : A→ D takva da
je h(x) = g( f (x)) = (g ◦ f )(x) koju nazivamo kompozicija funkcija
f i g.

Definicija 12: Neka su f : D → K i g : K → D funkcije. Kažemo da je g
inverzna funkcija funkcije f ako vrijedi

(g ◦ f )(x) = x, za svaki x ∈ D,

( f ◦ g)(y) = y, za svaki y ∈ K.

Inverznu funkciju označavamo s g = f−1.

Inverzna funkcija postoji samo za bijektivne funkcije. Graf inverzne
funkcije f−1 simetričan je grafu funkcije f obzirom na pravac y = x.
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Definicija 13: Neka je Dg ⊆ D f i g(x) = f (x) za svaki x ∈ Dg. Funkciju
g nazivamo restrikcija ili suženje funkcije f (oznaka g = f |Dg ), a
funkciju f ekstenzija ili proširenje funkcije g.

Mi ovdje proučavamo funkcije u kojima su D ⊆ R i K ⊆ R, tj. kod
kojih su domena i kodomena podskupovi skupa realnih brojeva.

Definicija 14: Funkciju f nazivamo periodičnom ako postoji realan
pozitivan broj P takav da vrijedi

f (x + P) = f (x), ∀x ∈ D.

Broj P nazivamo period funkcije f .

Definicija 15: Neka je D ⊆ R takav da vrijedi

x ∈ D ⇒ −x ∈ D,

tj. D je simetričan skup s obzirom na ishodište.
Kažemo da je f : D → R parna funkcija ako vrijedi

f (−x) = f (x), ∀x ∈ D.

Kažemo da je f : D → R neparna funkcija ako vrijedi

f (−x) = − f (x), ∀x ∈ D.

Definicija 16: Kažemo da funkcija f raste (strogo raste) na području
S ⊆ D ako je

f (x1) ≤ f (x2) ( f (x1) < f (x2))

za sve x1, x2 ∈ S, x1 < x2.
Kažemo da funkcija f pada (strogo pada) na području S ⊆ D ako je

f (x1) ≥ f (x2) ( f (x1) > f (x2))

za sve x1, x2 ∈ S, x1 < x2.

Osnovne elementarne funkcije su:

• polinomi

• racionalne funkcije

• eksponencijalne funkcije

• logaritamske funkcije

• opća potencija

• trigonometrijske funkcije

• ciklometrijske funkcije.
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Elementarne funkcije su funkcije koje se mogu dobiti iz osnovnih
elemenarnih funkcija pomoću konačnog broja aritmetičkih operacija i
konačnog broja njihovih kompozicija.

POLINOMI

Polinom n-tog stupnja je funkcija p : R→ R oblika

p(x) = anxn + an−1xn−1 + · · ·+ a1x + a0, a0, a1, . . . , an ∈ R, an 6= 0.

Realne brojeve a0, a1, . . . , an nazivamo koeficijentima polinoma. Za
n = 0 dobivamo konstantu p(x) = a0, za n = 1 linearnu funkciju
p(x) = a1x+ a0, a za n = 2 kvadratnu funkciju p(x) = a2x2 + a1x+ a0.

Konstantna funkcija je funkcija f : R→ R oblika

f (x) = c, c ∈ R.

Primijetimo da je konstantna funkcija polinom stupnja 0.

Primjer 6. Na slici 3.0.1 prikazan je graf konstante

f (x) = 2.

Slika 3.0.1: Graf konstantne funkcije

Linearna funkcija je funkcija f : R→ R oblika

f (x) = kx + l, k 6= 0, l ∈ R.

Primijetimo da je linearna funkcija polinom stupnja 1. Graf linearne
funkcije je pravac y = f (x). Broj k naziva se koeficijent smjera, a



88 elementarne funkcije

predstavlja tangens kuta α kojeg pravac zatvara s pozitivnim dijelom
osi x. Ako je k > 0 funkcija raste, a ako je k < 0 funkcija pada. Broj l
je odsječak pravca na osi y. Nultočka linearne funkcije je broj x za koji
je f (x) = 0.

Primjer 7. Na slici 3.0.2 prikazan je graf linearne funkcije

f (x) =
1
2

x + 2.

Slika 3.0.2: Graf linearne funkcije

Kvadratna funkcija je funkcija f : R→ R oblika

f (x) = a2 + bx + c, a 6= 0, b, c ∈ R.

Primijetimo da je kvadratna funkcija polinom stupnja 2. Graf kva-
dratne funkcije je parabola y = f (x). Kvadratnu funkciju možemo
zapisati u sljedećem faktoriziranom obliku:

f (x) = ax2 + bx + c = a(x− x1)(x− x2),

gdje su x1, x2 nultočke kvadratne funkcije. Nultočke kvadratne funk-
cije rješenja su jednadžbe f (x) = 0 i računamo ih po formuli:

x1,2 =
−b±

√
b2 − 4ac

2a
.

Koordinate tjemena T(xT, yT) parabole y = f (x) računamo po formu-
lama

xT = − b
2a

, yT =
4ac− b2

4a
.
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Za rješenja x1 i x2 kvadratne jednadžbe vrijede i Vièteove formule

x1 + x2 = −b
a

,

x1x2 =
c
a

.

Primjer 8. Na slici 3.0.3 prikazan je graf kvadratne funkcije

f (x) = 2x2 − 3x− 1.

Slika 3.0.3: Graf kvadratne funkcije

RACIONALNE FUNKCIJE

Funkcija f oblika f (x) = p(x)
q(x) , q(x) 6= 0, gdje su p(x) i q(x) po-

linomi, naziva se racionalna funkcija. Ako je stupanj brojnika manji
od stupnja nazivnika, onda kažemo da je to prava racionalna funk-
cija.

EKSPONENCIJALNE FUNKCIJE

Funkciju f : R → R+ oblika f (x) = ax, a > 0, a 6= 1 zovemo eks-
ponencijalna funkcija s bazom a.
Eksponencijalna funkcija ima sljedeća svojstva:

• ax1 ax2 = ax1+x2

•
ax1

ax2
= ax1−x2
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• a0 = 1

• za a > 1 funkcija je strogo rastuća

• za 0 < a < 1 funkcija je strogo padajuća.

Primjer 9. Na slici 3.0.4 prikazani su grafovi eksponencijalnih funkcija
f (x) = 2x i f (x) =

( 1
2

)x
.

Slika 3.0.4: Graf eksponencijalne funkcije

LOGARITAMSKE FUNKCIJE

Logaritamska funkcija s bazom a, f : R+ → R,
f (x) = logax, a > 0, a 6= 1, inverzna je funkcija eksponencijalne funk-
cije g(x) = ax.
Logaritamska funkcija ima sljedeća svojstva:

• loga(x1x2) = logax1 + logax2

• loga
x1

x2
= logax1 − logax2

• loga1 = 0

• logaxn = nlogax

• logan x = 1
n logax

• logax =
logbx
logba

• za a > 1 funkcija je strogo rastuća

• za 0 < a < 1 funkcija je strogo padajuća.
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Logaritam s bazom a = e, gdje je e matematička konstanta aproksi-
mativnog iznosa e = 2.71828, nazivamo prirodni logaritam i označa-
vamo ga s f (x) = ln x. Logaritam s bazom a = 10 nazivamo dekadski
logaritam i označavamo ga s f (x) = logx.

Primjer 10. Na slici 3.0.5 prikazani su grafovi logaritamskih funkcija
f (x) = log2 x i f (x) = log 1

2
x .

Slika 3.0.5: Graf logaritamske funkcije

OPĆA POTENCIJA

Funkciju f : R+ → R+ oblika
f (x) = xc = (elnx)c = eclnx, x > 0, c ∈ R nazivamo opća potencija.
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TRIGONOMETRIJSKE FUNKCIJE

Slika 3.0.6: Trigonometrijska kružnica

Promotrimo kružnicu sa središtem u ishodištu radijusa 1. Neka je
pravac p tangenta na kružnicu u točki A(1, 0). Namatanjem brojevnog
pravca p na kružnicu k(O, 1) definirano je preslikavanje koje svakom
realnom broju t ∈ p pridruži točku E(t) ∈ k(O, 1), gdje je početak
u točki A(1, 0) i kreće se u pozitivnom smjeru. Ovo preslikavanje
nazivamo eksponencijalno preslikavanje. U svaku točku kružnice
preslika se beskonačno mnogo točaka brojevnog pravca jer vrijedi

E(t) = E(t + 2kπ), k ∈ Z.

Funkcija kosinus definirana je kao apscisa, a funkcija sinus kao
ordinata točke E(t) na brojevnoj kružnici.
Funkcija tangens definirana je kao omjer funkcija sinus i kosinus nekog
kuta, tj.

tgx =
sinx
cosx

, cosx 6= 0.

Dakle, tangens možemo promatrati kao nagib pravca koji zatvara taj
kut s pozitivnim dijelom osi x.
Funkcija kotangens definirana je kao omjer funkcija kosinus i sinus
nekog kuta, tj.

ctgx =
cosx
sinx

, sinx 6= 0.

Na sljedećim slikama prikazani su grafovi trigonometrijskih funkcija
sinus, kosinus, tangens i kotangens.
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Funkcija sin : R→ [−1, 1] :

Slika 3.0.7: Graf funkcije sinus

Funkcija sinus ima sljedeća svojstva:

• sin(−x) = −sinx, ∀x (funkcija je neparna)

• sin(x + 2π) = sinx, ∀x (funkcija je periodična).

Funkcija cos : R→ [−1, 1] :

Slika 3.0.8: Graf funkcije kosinus

Funkcija kosinus ima sljedeća svojstva:

• cos(−x) = cosx, ∀x (funkcija je parna)
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• cos(x + 2π) = cosx, ∀x (funkcija je periodična).

Funkcija tg : R \ {π
2 + kπ, k ∈ Z} → R :

Slika 3.0.9: Graf funkcije tangens

Funkcija tangens ima sljedeća svojstva:

• tg(−x) = −tgx, ∀x (funkcija je neparna)

• tg(x + π) = tgx, ∀x (funkcija je periodična).

Funkcija ctg : R \ {kπ : k ∈ Z} → R :
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Slika 3.0.10: Graf funkcije kotangens

Funkcija kotangens ima sljedeća svojstva:

• ctg(−x) = −ctgx, ∀x (funkcija je neparna)

• ctg(x + π) = ctgx, ∀x (funkcija je periodična).

Trigonometrijski identiteti
Često ćemo u računskim operacijama s trigonometrijskim funkcijama
koristiti tzv. trigonometrijske identitete.
Osnovni su trigonometrijski identiteti

sin2x + cos2x = 1

tgx =
sinx
cosx

, cosx 6= 0

ctgx =
cosx
sinx

, sinx 6= 0

tj. tgx =
1

ctgx
.

Formule redukcije za sinus i kosinus funkciju su

sin(π + x) = −sinx

sin(π − x) = sinx

cos(π + x) = −cosx

cos(π − x) = −cosx

sin(
π

2
+ x) = cosx
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sin(
π

2
− x) = cosx

cos(
π

2
+ x) = −sinx

cos(
π

2
− x) = sinx.

Trigonometrijske funkcije zbroja i razlike su

sin(x± y) = sinxcosy± cosxsiny

cos(x± y) = cosxcosy∓ sinxsiny

tg(x± y) =
tgx± tgy
1∓ tgxtgy

.

Trigonometrijske funkcije dvostrukog kuta su

sin2x = 2sinxcosx

cos2x = cos2x− sin2x

tg2x =
2tgx

1− tg2x

ctg2x =
ctg2x− 1

2ctgx
.

Trigonometrijske funkcije polovičnog kuta su

sin
x
2
= ±

√
1− cosx

2

cos
x
2
= ±

√
1 + cosx

2
.

Transformacija umnoška u zbroj je

sinxcosy =
1
2
[sin(x + y) + sin(x− y)]

cosxsiny =
1
2
[sin(x + y)− sin(x− y)]

cosxcosy =
1
2
[cos(x + y) + cos(x− y)]

sinxsiny =
1
2
[cos(x− y)− cos(x + y)].

Transformacija zbroja u umnožak je

sinx + siny = 2sin
x + y

2
cos

x− y
2

sinx− siny = 2cos
x + y

2
sin

x− y
2

cosx + cosy = 2cos
x + y

2
cos

x− y
2
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cosx− cosy = −2sin
x + y

2
sin

x− y
2

.

CIKLOMETRIJSKE FUNKCIJE

Ciklometrijske funkcije su inverzne funkcije restrikcija trigonome-
trijskih funkcija.
Funkcija sinus je surjekcija, ali nije injekcija. Zato radimo restrikciju
funkcije sinus na neki interval kako bi postala injekcija, ali takod̄er da
ostane surjekcija. Tako dobivamo funkciju

Sin = sin|[− π
2 , π

2 ]
:
[
−π

2
,

π

2

]
→ [−1, 1]

koja je bijekcija pa ima inverznu funkciju

arcsin = Sin−1 : [−1, 1]→
[
−π

2
,

π

2

]
koju nazivamo arkus sinus.

Slika 3.0.11: Graf funkcije arkus sinus

Sad napravimo restrikciju funkcije kosinus na interval [0, π] kako
bi postala injekcija, ali takod̄er da ostane surjekcija. Tako dobivamo
funkciju

Cos = cos|[0,π] : [0, π]→ [−1, 1]
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koja je bijekcija pa ima inverznu funkciju

arccos = Cos−1 : [−1, 1]→ [0, π]

koju nazivamo arkus kosinus.

Slika 3.0.12: Graf funkcije arkus kosinus

Napravimo restrikciju funkcije tangens na interval〈
−π

2 , π
2

〉
. Tako dobivamo funkciju

Tg = tg|〈− π
2 , π

2 〉 :
〈
−π

2
,

π

2

〉
→ R

koja je bijekcija pa ima inverznu funkciju

arctg = Tg−1 : R→
〈
−π

2
,

π

2

〉

koju nazivamo arkus tangens.
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Slika 3.0.13: Graf funkcije arkus tangens

Napravimo restrikciju funkcije kotangens na interval
< 0, π >. Tako dobivamo funkciju

Ctg = ctg|〈0,π〉 : 〈0, π〉 → R

koja je bijekcija pa ima inverznu funkciju

arcctg = Ctg−1 : R→ 〈0, π〉

koju nazivamo arkus kotangens.

Slika 3.0.14: Graf funkcije arkus kotangens
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ZADATCI ZA VJEŽBU

1. Skicirajte grafove funkcija:

(a) f (x) = 1
2 x− 3

Rješenje:

Slika 3.0.15: Graf funkcije f (x) = 1
2 x− 3

(b) f (x) = x2 + x− 12.

Rješenje:

Slika 3.0.16: Graf funkcije f (x) = x2 + x− 12

2. Pronad̄ite kvadratnu funkciju zadanu grafom.
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Slika 3.0.17: Graf kvadratne funkcije

Rješenje: f (x) = − 5
9 x2 + 5.

3. Riješi jednadžbe:

(a) sin2x =
√

2
2

Rješenje: x = π
8 + kπ, k ∈ Z

(b) cosx =
√

3
2

Rješenje: x = π
6 + 2kπ, k ∈ Z.

4. Riješi jednadžbe:

(a) lnx + 1 = 0
Rješenje: x = e−1

(b) e2x = 1
Rješenje: x = 0.

5. Dokaži sljedeće trigonometrijske identitete:

(a) cos4x−cos2x
sinxsin3x = −2

(b)
cos( π

4 +x)+cos( π
4 −x)

cos( π
4 +x)−cos( π

4 −x)
= −ctgx

(c) 1−cos2x
sinx = 2sinx.
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L I M E S I

Granična vrijednost ili limes funkcije koristi se kako bismo opisali
ponašanje funkcije kad se njen argument približava nekoj točki ili kad
argument postaje proizvoljno velik, tj. raste u beskonačnost. Granične
vrijednosti ćemo u nastavku ovog poglavlja i u idućem poglavlju
koristiti kako bismo definirali neprekidnost i derivaciju funkcije.

Definicija 17: Neka je ε > 0 i a ∈ R. Otvoreni interval
< a− ε, a + ε > zovemo okolina točke a.

Slika 4.0.1: Okolina točke a

Definicija 18: Cauchyjeva definicija limesa
Neka je dana funkcija f : D f → R, D f ⊆ R. Za realan broj l kažemo

da je limes funkcije f u točki a ∈ R ako za svaki ε > 0 postoji δ > 0
takav da je 〈a− δ, a + δ〉 \ {a} ⊆ D f i da iz x ∈ 〈a− δ, a + δ〉 slijedi
f (x) ∈ 〈l − ε, l + ε〉.

Slika 4.0.2: Limes funkcije f u točki a.
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Dakle, ako postoji realan broj l takav da funkcijske vrijednosti f (x)
teže prema točki l kad nezavisna varijabla x teži prema točki a, onda
kažemo da je točka l limes funkcije f u točki a i pišemo

lim
x→a

f (x) = l.

Iz gornje definicije vidimo da je za pojam limesa funkcije f u točki a
potrebno da funkcija bude definirana na nekoj okolini točke a, ali ne
nužno i u točki a.
Takod̄er možemo zaključiti da ako i postoji funkcijska vrijednost u
točki a, ona se ne mora poklapati s limesom funkcije u točki a, što je
prikazano na slici 4.0.3.

Slika 4.0.3: Vrijednost funkcije f u točki a nije jednaka limesu funkcije f u
točki a

Definicija 19: Neka je a ∈ D f . Ako postoji limx→a f (x) i ako je
limx→a f (x) = f (a), onda kažemo da je funkcija f neprekidna u
točki a. Kažemo da je funkcija f neprekidna na skupu S ⊆ D f ako
je neprekidna u svakoj točki x ∈ S.

Možemo zaključiti da funkcija sa slike 4.0.3 nije neprekidna u točki a.

Nezavisna varijabla x može težiti točki a slijeva i zdesna i ti limesi
ne moraju biti jednaki.
Vrijednost l je limes s lijeva funkcije f u točki a, odnosno

lim
x→a−

f (x) = l
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ako za svaki ε > 0 postoji δ > 0 takav da iz x ∈ D f ∩ 〈a− δ, a〉 slijedi
| f (x)− l| < ε.
Slično, vrijednost l je limes s desna funkcije f u točki a, odnosno

lim
x→a+

f (x) = l

ako za svaki ε > 0 postoji δ > 0 takav da iz x ∈ D f ∩ 〈a, a + δ〉 slijedi
| f (x)− l| < ε.

Primjer 11. Nacrtajmo graf funkcije f zadane s

f (x) =
{

x2 − 2, x < 1,
x, x > 1.

Slika 4.0.4: Limes funkcije u točki

Vidimo da gornja funkcija nema limes u točki 1 jer ako se točki 1
približavamo s lijeve strane, funkcijske vrijednosti teže prema −1, a
ako se približavamo s desne strane, funkcijske vrijednosti teže prema 1.

Kod računanja limesa funkcija koristimo osnovna svojstva limesa
koja ćemo sad navesti. Neka funkcije f i g imaju limese u točki x0.
Tada vrijedi:

1. limx→x0( f ± g)(x) = limx→x0 f (x)± limx→x0 g(x)

2. limx→x0( f · g)(x) = limx→x0 f (x) · limx→x0 g(x)

3. limx→x0

(
f
g

)
(x) = limx→x0 f (x)

limx→x0 g(x) , limx→x0 g(x) 6= 0

4. limx→x0

(
f (x)g(x)

)
= (limx→x0 f (x))limx→x0 g(x).

Posebno vrijedi limx→x0(c f (x)) = c limx→x0 f (x).
U nastavku ćemo bez dokaza navesti nekoliko osnovnih limesa

funkcija koje ćemo koristiti kod računanja limesa ostalih funkcija:
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1. limx→0
sinx

x = 1

2. limx→0(1 + x)
1
x = e

3. limx→0
ln(1+x)

x = 1

4. limx→0
ax−1

x = lna

5. limx→0
ex−1

x = 1.

Kod računanja limesa mogu se pojaviti neodred̄eni oblici 0
0 , ∞

∞ ,
0 · ∞, ∞ − ∞, 00, 1∞, ∞0. Svi ti oblici transformacijama se svode
na jedan od oblika 0

0 i ∞
∞ kod kojih možemo koristiti L’Hospitalovo

pravilo. Njega ćemo uvesti kao jednu od primjena diferencijalnog
računa. Do tad ćemo se koristiti drugim tehnikama računanja limesa.

Zadatak 42. Izračunajte limese:

1.

lim
x→3

x2 + 4x− 21
x3 − 3x2

Rješenje:

lim
x→3

x2 + 4x− 21
x3 − 3x2 = lim

x→3

x2 + 7x− 3x− 21
x2(x− 3)

= lim
x→3

x(x + 7)− 3(x + 7)
x2(x− 3)

= lim
x→3

����(x− 3)(x + 7)
x2����(x− 3)

=
10
9

.

2.

lim
x→2

4− x2

3−
√

x2 + 5
Rješenje:

lim
x→2

4− x2

3−
√

x2 + 5
= lim

x→2

4− x2

3−
√

x2 + 5
· 3 +

√
x2 + 5

3 +
√

x2 + 5

= lim
x→2

(4− x2)
(

3 +
√

x2 + 5
)

9− (x2 + 5)

= lim
x→2

�����(4− x2)
(

3 +
√

x2 + 5
)

����4− x2

= 3 +
√

4 + 5 = 6.

3.

lim
x→0

1− cos 2x
3x sin x

Rješenje:

= lim
x→0

1− cos 2x
3x sin x

= lim
x→0

sin2 x + cos2 x− (cos2 x− sin2 x)
3x sin x

= lim
x→0

2 sin�2 x
3x���sin x

=
2
3

lim
x→0

sin x
x

=
2
3

.
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4.

lim
x→0

tg 4x
x

Rješenje:

lim
x→0

tg 4x
x

= lim
x→0

sin 4x
x cos 4x

= lim
x→0

4 sin 4x
4x cos 4x

= 4 lim
x→0

sin 4x
4x

lim
x→0

1
cos 4x

= 4.

5.

lim
x→0

tg x− sin x
x3

Rješenje:

lim
x→0

tg x− sin x
x3 = lim

x→0

sin x
cos x − sinx

x3 = lim
x→0

sin x− sin x cos x
x3 cos x

= lim
x→0

sin x(1− cos x)
x3 cos x

= lim
x→0

sin x
x

lim
x→0

1− cos x
x2 cos x

= lim
x→0

2 sin2 x
2

x2 cos x
= lim

x→0

2 sin2 x
2

4( x
2 )

2 cos x
=

1
2

lim
x→0

sin2 x
2

( x
2 )

2 lim
x→0

1
cos x

=
1
2

.

6.

lim
x→0

ln(5x + 1)
x

Rješenje:

lim
x→0

ln(5x + 1)
x

= 5 lim
x→0

ln(5x + 1)
5x

= 5.

7.
lim
x→0

(1 + 3x)
2
x

Rješenje:

lim
x→0

(1 + 3x)
2
x = lim

x→0
(1 + 3x)

6
3x =

(
lim
x→0

(1 + 3x)
1

3x

)6

= e6.

8.

lim
x→0

e4x − ex

x
Rješenje:

= lim
x→0

e4x − ex

x
= lim

x→0

ex(e3x − 1)
x

= lim
x→0

3ex(e3x − 1)
3x

= lim
x→0

3ex lim
x→0

e3x − 1
3x

= 3.
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D E R I VA C I J E

Derivacija funkcije zajedno s integralnim računom čini osnovu infini-
tezimalnog računa koji ima široku primjenu u znanosti i inženjerstvu.
Povijesno su dva po prirodi različita problema bila glavna motivacija
za razvoj diferencijalnog računa. Jedan od njih je fizički problem
definiranja pojma brzine. Drugi problem je geometrijske naravi, a
odnosi se na pitanje postojanja jedinstvene tangente u nekoj točki grafa
funkcije f .
Derivacija opisuje brzinu promjene funkcije u odnosu na promjenu
argumenta funkcije.

5.1 definicija derivacije

Slika 5.1.1: Definicija derivacije

Označimo točke T0(x0, f (x0)) i T(x0 + ∆x, f (x0 + ∆x)) na grafu funk-
cije f . Prisjetimo se da je koeficijent smjera pravca jednak tangensu
kuta koji pravac zatvara s pozitivnim dijelom osi x. Pravac s kroz točke
T0 i T nazivamo sekantom grafa funkcije f . Vidimo da je koeficijent
smjera sekante

k = tgα =
∆ f
∆x

=
f (x0 + ∆x)− f (x0)

∆x
.
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Kad ∆x → 0, točka T se po grafu funkcije "giba" do točke T0 i sekanta
s prelazi u pravac t kojeg nazivamo tangentom na graf funkcije f u
točki x0. Dakle, ako postoji lim∆x→0, on će nam dati koeficijent smjera
tangente funkcije f u točki x0. Taj limes nazivamo derivacija funkcije
f u točki x0 i definiramo ga kao

f ′(x0) = lim
∆x→0

∆ f
∆x

= lim
∆x→0

f (x0 + ∆x)− f (x0)

∆x
.

Kažemo da je funkcija f derivabilna u točki x0 ako postoji limes
lim∆x→0

f (x0+∆x)− f (x0)
∆x . Funkcija f je derivabilna na intervalu 〈a, b〉

ako je derivabilna u svakoj točki tog intervala. Za funkciju f kažemo
da je derivabilna ako je derivabilna na cijelom području definicije.
Kao što smo već rekli,

k = tgα = f ′(x0).

Dakle, jednadžba tangente na graf funkcije f u točki x0 je

t . . . y− f (x0) = f ′(x0)(x− x0).

Označimo s D′f skup svih točaka domene D f funkcije f u kojima
postoji derivacija f ′(x0). Funkciju

x 7→ f ′(x), x ∈ D′f

nazivamo derivacija funkcije f .
Dakle, derivacija funkcije u točki realan je broj, a derivacija funk-
cije je nova funkcija koja će svakoj točki domene pridružiti koeficijent
smjera tangente u toj točki.
Derivabilnu funkciju f kojoj je derivacija f ′ neprekidna funkcija nazi-
vamo neprekidno derivabilna ili glatka funkcija.

Zadatak 43. Odredite jednadžbu tangente na graf funkcije f (x) = 1
2 x2 − 1

u točki x0 = 3 koristeći se definicijom derivacije funkcije.

Rješenje: Dakle, moramo odrediti tangentu kvadratne funkcije
f (x) = 1

2 x2 − 1 u danoj točki T0.
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Slika 5.1.2: Zadani elementi zadatka 43

Najprije odredimo koordinatu y0 točke T0:

y0 = f (3) =
1
2
· 32 − 1 =

7
2

.

Sad odredimo koeficijent smjera tangente u točki T0 koristeći se defini-
cijom derivacije:

k = f ′(3) = lim
∆x→0

f (3 + ∆x)− f (3)
∆x

= lim
∆x→0

1
2 (3 + ∆x)2 − 1−

[ 1
2 · 32 − 1

]
∆x

= lim
∆x→0

3∆x + 1
2 ∆x2

∆x
= lim

∆x→0

��∆x (3 + 1
2 ∆x)

��∆x
= 3.

Jednadžba tangente glasi

t · · · y = 3x− 11
2

.

Ako funkciju f i pravac t prikažemo grafički, možemo se uvjeriti da je
t tangenta na graf u točki T0.
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Slika 5.1.3: Rješenje zadatka 43

Zadatak 44. Koristeći se definicijom derivacije funkcije odredi derivaciju
funkcije f (x) =

√
x.

Rješenje:

f ′(x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x

= lim
∆x→0

√
x + ∆x−

√
x

∆x

= lim
∆x→0

√
x + ∆x−

√
x

∆x
·
√

x + ∆x +
√

x√
x + ∆x +

√
x

= lim
∆x→0

√
x + ∆x

2 −
√

x2

∆x
(√

x + ∆x +
√

x
)

= lim
∆x→0

��∆x

��∆x
(√

x + ∆x +
√

x
) =

1
2
√

x
.

Zadatak 45. Koristeći se definicijom derivacije funkcije odredi derivaciju
funkcije f (x) = sin x.
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Rješenje:

f ′(x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x

= lim
∆x→0

sin(x + ∆x)− sinx
∆x

= lim
∆x→0

2sin x+∆x−x
2 cos x+∆x+x

2
∆x

= lim
∆x→0

�2sin ∆x
2 cos 2x+∆x

2

�2 ∆x
2

= cosx.

Zadatak 46. Odredite jednadžbu tangente na graf funkcije f (x) = x2 u
točki x0 = 2 koristeći se definicijom derivacije funkcije.

Rješenje: y = 4x− 4.

Zadatak 47. Koristeći se definicijom derivacije odredite derivacije sljedećih
funkcija:

1. f (x) = x3

Rješenje: f ′(x) = 3x2

2. f (x) = cos x
Rješenje: f ′(x) = − sin x

3. f (x) = tg x
Rješenje: f ′(x) = 1

cos2 x .

5.2 derivacije elementarnih funkcija i pravila derivira-
nja

Koristeći definiciju derivacije funkcije, mogu se izvesti sve derivacije
elementarnih funkcija. Mi ćemo navesti dobivene rezultate za one
funkcije koje ćemo koristiti:

c′ = 0

(xn)′ = nx(n−1)

(cosx)′ = −sinx

(sinx)′ = cosx

(ctgx)′ =
−1

sin2x

(tgx)′ =
1

cos2x
(ax)′ = axlna

(ex)′ = ex

(logax)′ =
1

xlna

(lnx)′ =
1
x

.
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Koristeći definiciju derivacije takod̄er izvodimo pravila za derivaciju
zbroja, umnoška i kvocijenta funkcija te pravilo za derivaciju složene
funkcije. Ovdje ćemo ih sve navesti, a neke od njih i dokazati:

( f ± g)′(x) = f ′(x)± g′(x)

( f · g)′(x) = f ′(x) · g(x) + f (x) · g′(x)(
f
g

)′
=

f ′(x)g(x)− f (x)g′(x)

(g(x))2

( f (g(x))′ = f ′(g(x))g′(x).

Dokažimo npr. pravilo za derivaciju umnoška:

( f · g)′(x)

= lim
∆x→0

( f · g)(x + ∆x)− ( f · g)(x)
∆x

lim
∆x→0

f (x + ∆x) · g(x + ∆x)− f (x) · g(x)
∆x

lim
∆x→0

f (x + ∆x)g(x + ∆x)− f (x)g(x) + f (x)g(x + ∆x)− f (x)g(x + ∆x)
∆x

lim
∆x→0

[ f (x + ∆x)− f (x)] g(x + ∆x) + f (x) [g(x + ∆x)− g(x)]
∆x

lim
∆x→0

[ f (x + ∆x)− f (x)]
∆x

· g(x + ∆x) + lim
∆x→0

f (x) · [g(x + ∆x)− g(x)]
∆x

= f ′(x)g(x) + f (x)g′(x).

Ako stavimo da je f (x) = c, c ∈ R, dobivamo

(c · g)′(x)

= c′ · g(x) + c · g′(x)

= 0 · g(x) + c · g′(x)

= c · g′(x)

Zadatak 48. Koristeći se tabličnim derivacijama elementarnih funkcija i
pravilima deriviranja, odredite derivacije sljedećih funkcija:

1. f (x) = sin x + x5

2. f (x) = x3 tg x

3. f (x) = 5 ln x

4. f (x) = sin x
x2

5. f (x) = (2 + x)2

6. f (x) = (2 + x)16

7. f (x) = sin(5x)
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8. f (x) = ln(ln x + 5)

9. f (x) = ctg 1+x
1−x .

Rješenje:

1. Koristimo pravilo za derivaciju zbroja dviju funkcija:

f ′(x) = cosx + 5x4.

2. Koristimo pravilo za derivaciju umnoška dviju funkcija:

f ′(x) = (x3)′tgx + x3(tgx)′ = 3x2tgx +
x3

cos2x
.

3. Koristimo pravilo za derivaciju umnoška konstante i funkcije:

f ′(x) = 5(lnx)′ =
5
x

.

4. Koristimo pravilo za derivaciju kvocijenta dviju funkcija:

f ′(x) =
(sinx)′x2 − sinx(x2)′

(x2)2 =
xcosx− 2sinx

x3 .

5. Zapišimo funkciju f u obliku:

f (x) = 4 + 4x + x2.

Sad koristimo pravilo za derivaciju zbroja:

f ′(x) = 0 + 4 + 2x = 4 + 2x.

6. Sad koristimo pravilo za derivaciju složene funkcije:

x
g−→ 2 + x

f−→ (2 + x)16.

Dakle, g(x) = 2 + x, a f (x) = x16. Sad je

f ′(x) = 16(2 + x)15(2 + x)′ = 16(2 + x)15.

7. Sad koristimo pravilo za derivaciju složene funkcije:

x
g−→ 5x

f−→ sin(5x).

Dakle, g(x) = 5x, a f (x) = sinx. Sad je

f ′(x) = cos(5x)(5x)′ = 5cos(5x).
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8. Sad koristimo pravilo za derivaciju složene funkcije:

x
g−→ lnx + 5

f−→ ln(lnx + 5).

Dakle, g(x) = lnx + 5, a f (x) = lnx. Sad je

f ′(x) =
1

lnx + 5
(lnx + 5)′ =

1
lnx + 5

· 1
x
=

1
x(lnx + 5)

.

9. Sad koristimo pravilo za derivaciju složene funkcije i pravilo za
derivaciju kvocijenta:

x
g−→ 1 + x

1− x
f−→ ctg

1 + x
1− x

.

Dakle, g(x) = 1+x
1−x , a f (x) = ctgx. Sad je

f ′(x) =
−1

sin2 ( 1+x
1−x

) ·(1 + x
1− x

)′
=

−1
sin2 ( 1+x

1−x

) · 1(1− x)− (−1)(1 + x)
(1− x)2

=
−1

sin2 ( 1+x
1−x

) · 1− x + 1 + x
(1− x)2

=
−2

(1− x)2sin2 ( 1+x
1−x

) .

Zadatak 49. Koristeći se tablicom derivacija elementarnih funkcija i pravi-
lima deriviranja, odredi derivacije sljedećih funkcija:

1. f (x) = x
ln x

Rješenje: f ′(x) = ln x−1
ln2 x

2. f (x) = x4 · ctg x
Rješenje: f ′(x) = x3(2 sin 2x−x)

sin2 x

3. f (x) = (3x + 2)3

Rješenje: f ′(x) = 9(3x + 2)2

4. f (x) = cos(3x + 1)
Rješenje: f ′(x) = −3 sin(3x + 1)

5. f (x) = ln 1−x
1+x

Rješenje: f ′(x) = −2
1−x2 .

5.3 l’hospitalovo pravilo

Kao što smo već spomenili u prethodnom poglavlju kod računanja
limesa može se pojaviti jedan od sedam neodred̄enih oblika:

0
0

,
∞
∞

, 0 ·∞, ∞−∞, 00, 1∞, ∞0.
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Limese oblika 0
0 i ∞

∞ jednostavnije možemo riješiti pomoću L’Hospitalovog
pravila koje ćemo navesti u nastavku. Ostali neodred̄eni oblici se po-
moću odgovarajućih transformacija svode na jedan od ova dva oblika.

L’Hospitalovo pravilo
Neka za funkcije f , g : D → R vrijedi

lim
x→c

f (x) = 0, lim
x→c

g(x) = 0 ili

lim
x→c

f (x) = ∞, lim
x→c

g(x) = ∞,

pri čemu je c ∈ 〈a, b〉 ⊆ D. Neka su f i g neprekidne na skupu [a, b]
i neprekidno derivabilne na skupu 〈a, c〉 ∪ 〈c, b〉. Neka je g(x) 6= 0
za svaki x ∈ 〈a, c〉 ∪ 〈c, b〉. Ako postoji limx→c

f ′(x)
g′(x) = k, pri čemu je

k ∈ R ili je k = ∞ ili je k = −∞, tada je

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

= k.

Zadatak 50. Izračunajte limese:

1.
lim
x→0

sin 5x
x

Rješenje:

lim
x→0

sin 5x
x

= lim
x→0

(sin 5x)′

(x)′
= lim

x→0

5 cos 5x
1

= 5

2.

lim
x→0

ln(5x + 1)
x

Rješenje:

lim
x→0

ln(5x + 1)
x

= lim
x→0

(ln(5x + 1))′

(x)′
= lim

x→0

5
5x+1

1
= 5

3.

lim
x→3

x2 + 2x− 15
x− 3

Rješenje:

lim
x→3

x2 + 2x− 15
x− 3

= lim
x→3

(x2 + 2x− 15)′

(x− 3)′
= lim

x→3

2x + 2
1

= 8.

5.4 rast i pad funkcije . ekstremi

U nastavku ćemo korištenjem prve derivacije dati kriterije za rast i pad
te lokalne ekstreme funkcije. Prisjetimo se definicije (strogo) rastuće i
(strogo) padajuće funkcije iz poglavlja 3, Elementarne funkcije.
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Definicija 20: Kažemo da funkcija f raste (strogo raste) na području
S ⊆ D ako je

f (x1) ≤ f (x2) ( f (x1) < f (x2))

za sve x1, x2 ∈ S, x1 < x2.
Kažemo da funkcija f pada (strogo pada) na području S ⊆ D ako je

f (x1) ≥ f (x2) ( f (x1) > f (x2))

za sve x1, x2 ∈ S, x1 < x2.

Primjer 12. Jedan primjer svugdje rastuće funkcije je eksponencijalna funk-
cija s bazom većom od 1.

Slika 5.4.1: Eksponencijalna funkcija

Definicija 21: Neka je x0 ∈ D. Kažemo da je točka f (x0) lokalni
minimum funkcije f ako postoji okolina 〈x0 − δ, x0 + δ〉 točke x0 na
kojoj je

f (x0) ≤ f (x)

za svaki x ∈ 〈x0 − δ, x0 + δ〉.
Kažemo da je točka f (x0) lokalni maksimum funkcije f ako postoji
okolina 〈x0 − δ, x0 + δ〉 točke x0 na kojoj je

f (x0) ≥ f (x)

za svaki x ∈ 〈x0 − δ, x0 + δ〉.
Na slici 5.4.2 nacrtan je graf neke funkcije te su na njemu postavljene

tangente u točkama A, B i C.
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Slika 5.4.2: Rast i pad funkcije. Ekstremi.

Vidimo da točka A leži na intervalu na kojem funkcija strogo raste,
a B na intervalu na kojem funkcija strogo pada. Takod̄er vidimo da je
točka C(x0, f (x0)) lokalni maksimum funkcije jer je f (x0) ≥ f (x), za
svaki x iz neke okoline 〈x0 − δ, x0 + δ〉 točke x0.
Pogledajmo sad tangentu u točki A. Prisjetimo se da nam je derivacija
funkcije u točki dala koeficijent smjera tangente u toj točki, tj. k1 =

f ′(x1) = tgα1. Kako je 00 < α1 < 900, onda je f ′(x1) > 0. Slično je
tako k2 = f ′(x2) = tgα2. Kako je 900 < α2 < 1800, onda je f ′(x2) < 0.
Dakle, možemo zaključiti sljedeće:
pretpostavimo da funkcija f ima prvu derivaciju u svakoj točki nekog
intervala 〈a, b〉;
ako je

f ′(x) ≥ 0
(

f ′(x) > 0
)

, za svaki x ∈ 〈a, b〉

onda funkcija f raste (strogo raste) na 〈a, b〉;
ako je

f ′(x) ≤ 0
(

f ′(x) < 0
)

, za svaki x ∈ 〈a, b〉

onda funkcija f pada (strogo pada) na 〈a, b〉.

Proučimo sad lokalne ekstreme. Njih tražimo u točkama x0 ∈ D
za koje postoji okolina na kojoj je funkcija f definirana i u kojima je
f ′(x0) = 0 ili ne postoji f ′(x0).

Definicija 22: Neka je f neprekidna funkcija u točki x0. Točka x0 je
stacionarna točka funkcije f ako je f ′(x0) = 0. Točka x0 je kritična
točka funkcije f ako je x0 stacionarna točka ili ako f nije derivabilna
u točki x0.
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Dakle, kritične točke su jedine točke u kojima mogu (ali i ne moraju)
postojati lokalni ekstremi.

Definicija 23: Neka je f neprekidna u točki x0. Ako postoji δ > 0
takav da je f ′(x) ≤ 0, za svaki x ∈ 〈x0 − δ, x0〉 i f ′(x) ≥ 0, za svaki
x ∈ 〈x0, x0 + δ〉, onda je f (x0) lokalni minimum. Ako postoji δ > 0
takav da je f ′(x) ≥ 0, za svaki x ∈ 〈x0 − δ, x0〉 i f ′(x) ≤ 0, za svaki
x ∈ 〈x0, x0 + δ〉, onda je f (x0) lokalni maksimum.

Jednostavnije govoreći, ako funkcija f do točke f (x0) pada, a od
točke f (x0) raste, onda je f (x0) lokalni minimum. Isto tako, ako
funkcija f do točke f (x0) raste, a od točke f (x0) pada, onda je f (x0)

lokalni maksimum.
U pojedinim zadacima koji slijede prokomentirat ćemo i postojanje

asimptota na graf funkcije. Stoga u nastavku dajemo i definiciju
asimptota.
Asimptota funkcije je pravac sa svojstvom da udaljenost izmed̄u
točke grafa funkcije i tog pravca teži u nulu kada točka na grafu teži u
beskonačnost. Asimptote mogu biti vertikalne, horizontalne i kose.

Pravac x = x0 nazivamo vertikalna asimptota funkcije f ako vrijedi

limx→x0− f (x) = ±∞ ili lim
x→x0+

f (x) = ±∞.

U prvom slučaju govorimo o vertikalnoj asimptoti s lijeve strane, dok
u drugom slučaju govorimo o vertikalnoj asimptoti s desne strane.
Vertikalne asimptote mogu se nalaziti u točkama u kojima funkcija
nije definirana ili u otvorenim rubovima domene.

Horizontalne asimptote su pravci paralelni s x-osi, dakle imaju
koeficijent smjera k = 0. Pravac y = l naziva se desna horizontalna
asimptota funkcije f ako postoji

l = lim
x→+∞

f (x).

Pravac y = l naziva se lijeva horizontalna asimptota funkcije f ako
postoji

l = lim
x→−∞

f (x).

Preostaje nam još razmotriti kose asimptote . Desna kosa asimptota
je pravac y = kx + l za koji vrijedi

lim
x→+∞

[ f (x)− kx− l] = 0.

Lijeva kosa asimptota je pravac y = kx + l za koji vrijedi

lim
x→−∞

[ f (x)− kx− l] = 0.

Koeficijenti k i l za desnu kosu asimptotu jednaki su

k = lim
x→+∞

f (x)
x

,
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pri čemu je k 6= 0,−∞,+∞ i

l = lim
x→+∞

[ f (x)− kx],

pri čemu je l 6= −∞,+∞. Analogno odred̄ujemo koeficijente k i l za
dobiti lijevu kosu asimptotu tj.

k = lim
x→−∞

f (x)
x

,

pri čemu je k 6= 0,−∞,+∞ i

l = lim
x→−∞

[ f (x)− kx],

pri čemu je l 6= −∞,+∞.

Zadatak 51. Odredite intervale rasta, intervale pada i lokalne ekstreme
funkcije f (x) = 1

3 x3 − 1
2 x2 − 6x.

Rješenje: Odredimo derivaciju funkcije f :

f ′(x) =
1
3
· 3x2 − 1

2
· 2x− 6 = x2 − x− 6.

Kako bismo dobili intervale rasta i pada, moramo odrediti predz-
nak derivacije. Mi ćemo to napraviti tako da nacrtamo derivaciju, tj.
kvadratnu funkciju f ′(x).

x1,2 =
−(−1)±

√
(−1)2 + 24

2
=

1± 5
2

,

x1 = −2, x2 = 3.

Slika 5.4.3: Graf funkcije f ′(x) = x2 − x− 6

Sa slike 5.4.3 vidimo da su vrijednosti kvadratne funkcije pozitivne
na intervalu 〈−∞,−2〉 ∪ 〈3, ∞〉, a negativne na intervalu 〈−2, 3〉. To
znači da f raste na intervalu 〈−∞,−2〉 ∪ 〈3, ∞〉, a pada na intervalu
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〈−2, 3〉.
Stacionarne točke su x1 = −2, x2 = 3 jer smo dobili da je u tim
točkama derivacija jednaka nuli. Kako je lijevo od točke x1 = −2
f ′ > 0, tj. funkcija raste, a desno je f ′ < 0 pa funkcija pada, onda je u
točki x1 = −2 lokalni maksimum tj. lokalni maksimum je f (−2) = 22

3 .
Isto tako, lijevo od točke x2 = 3 funkcija pada, a desno raste pa je u
toj točki lokalni minimum tj. lokalni minimum je f (3) = − 27

2 .
Dakle, M(−2, 22

3 ) je točka lokalnog maksimuma, a m(3,− 27
2 ) točka

lokalnog minimuma na grafu.
Iako se u zadatku to ne traži, ovdje je još dodatno skiciran graf funkcije
f te su označeni njeni lokalni ekstremi. Na skiciranom grafu možemo
provjeriti dobivene intervale rasta i pada.

Slika 5.4.4: Graf funkcije f (x) = 1
3 x3 − 1

2 x2 − 6x

Zadatak 52. Odredite intervale rasta, intervale pada i lokalne ekstreme
funkcije f (x) = −2x+3

x2 .

Rješenje: Funkcija nije definirana u 0, dakle D = R\ {0}. Sad
odredimo derivaciju funkcije f :

f ′(x) =
−2x2 − 2x(−2x + 3)

x4 =
−2x2 + 4x2 − 6x

x4 =
2x2 − 6x

x4 .

Kako bismo dobili intervale rasta i pada, moramo odrediti predznak
derivacije. Vidimo da je nazivnik pozitivan za svaki x 6= 0 tako da
nam predznak derivacije ovisi o brojniku, a to je kvadratna funkcija
koju jednostavno možemo nacrtati. Odredimo joj nultočke:

2x(x− 3) = 0

x1 = 0, x2 = 3.
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Primijetimo da x1 = 0 neće biti ekstrem jer x1 = 0 /∈ D. Dakle, x1 = 0
je kritična točka funkcije f .

Slika 5.4.5: Graf funkcije f ′(x) = 2x2 − 6x

Sa slike 5.4.5 vidimo da su vrijednosti kvadratne funkcije pozitivne
na intervalu 〈−∞, 0〉 ∪ 〈3, ∞〉, a negativne na intervalu 〈0, 3〉. To znači
da f raste na intervalu 〈−∞, 0〉 ∪ 〈3, ∞〉, a pada na intervalu 〈0, 3〉.
Stacionarna točka je x2 = 3. x1 = 0 nije stacionarna točka jer ne
pripada domeni D. Kako lijevo od točke x2 = 3 funkcija pada, a desno
raste, u toj točki je lokalni minimum i on je jednak f (3) = − 1

3 .
Dakle, m(3,− 1

3 ) je točka lokalnog minimuma na grafu.
Iako se u zadatku to ne traži, ovdje je još dodatno skiciran graf funkcije
f te je označen njen lokalni minimum. Na skiciranom grafu možemo
provjeriti dobivene intervale rasta i pada. Primijetimo da je pravac
x = 0 lijeva i desna vertikalna asimptota. Takod̄er, pravac y = 0 je
lijeva i desna horizontalna asimptota.

Slika 5.4.6: Graf funkcije f (x) = −2x+3
x2
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Zadatak 53. Odredite intervale rasta, intervale pada i lokalne ekstreme
funkcije f (x) = x3e−x.

Rješenje: Odredimo derivaciju funkcije f :

f ′(x) = 3x2e−x + x3e−x(−1) = x2e−x(3− x).

Kako bismo dobili intervale rasta i pada, moramo odrediti predznak
derivacije. Kako je x2e−x ≥ 0, predznak derivacije ovisi o linearnoj
funkciji y = 3− x koju jednostavno možemo skicirati.

Slika 5.4.7: Graf funkcije f ′(x) = 3− x

Vidimo da je prva derivacija pozitivna na intervalu 〈−∞, 3〉, a ne-
gativna na intervalu 〈3, ∞〉. To znači da funkcija raste na intervalu
〈−∞, 3〉, a pada na intervalu 〈3, ∞〉. Stoga je M(3, f (3)) = M(3, 27e−3)

točka lokalnog maksimuma na grafu.
Iako se u zadatku to ne traži, ovdje je još dodatno skiciran graf funkcije
f te je označen njen lokalni maksimum. Na skiciranom grafu možemo
provjeriti dobivene intervale rasta i pada. Možemo primijetiti da je
pravac y = 0 desna horizontalna asimptota.

Slika 5.4.8: Graf funkcije f (x) = x3e−x
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Zadatak 54. Odredite intervale rasta, intervale pada i lokalne ekstreme
funkcije f (x) = x + 4

x .

Rješenje: Napišimo f u obliku f (x) = x2+4
x . Sad odredimo deriva-

ciju funkcije f :

f ′(x) =
2x2 − (x2 + 4)

x2 =
x2 − 4

x2 .

Kako bismo dobili intervale rasta i pada, moramo odrediti predznak
derivacije. Kako je x2 > 0, za x 6= 0, predznak derivacije ovisi o
kvadratnoj funkciji y = x2 − 4 koju jednostavno možemo skicirati.
Odredimo nultočke kvadratne funkcije:

x2 − 4 = 0

(x− 2)(x + 2) = 0

x1 = −2, x2 = 2.

Slika 5.4.9: Graf funkcije f ′(x) = x2 − 4

Sa slike 5.4.9 vidimo da su vrijednosti kvadratne funkcije pozitivne
na intervalu 〈−∞,−2〉 ∪ 〈2, ∞〉, a negativne na intervalu 〈−2, 2〉. To
znači da f raste na intervalu 〈−∞,−2〉 ∪ 〈2, ∞〉, a pada na intervalu
〈−2, 2〉 \ {0}.
Stacionarne točke su x1 = −2 i x2 = 2. Kako lijevo od točke x1 =

−2 funkcija raste, a desno pada, onda je u točki x1 = −2 lokalni
maksimum i on iznosi f (−2) = −4. Slično je u točki x2 = 2 lokalni
minimum i on iznosi f (2) = 4. Dakle, M(−2,−4) je točka lokalnog
maksimuma, a m(2, 4) točka lokalnog minimuma na grafu.
Iako se u zadatku to ne traži, ovdje je još dodatno skiciran graf funkcije
f te su označeni njen lokalni minimum i maksimum. Na skiciranom
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grafu možemo provjeriti dobivene intervale rasta i pada. Takod̄er
vidimo da je pravac x = 0 lijeva i desna vertikalna asimptota.

Slika 5.4.10: Graf funkcije f (x) = x + 4
x

Zadatak 55. Odredite intervale rasta, intervale pada i lokalne ekstreme
funkcije f (x) = x ln x.

Rješenje: Odredimo derivaciju funkcije f :

f ′(x) = 1 · lnx + x · 1
x
= lnx + 1.

Kako bismo dobili intervale rasta i pada, moramo odrediti predznak
derivacije. Odredimo najprije stacionarnu točku:

lnx + 1 = 0

lnx = −1

x = e−1.

Sad nacrtajmo funkciju lnx + 1:



5.4 rast i pad funkcije . ekstremi 127

Slika 5.4.11: Graf funkcije f ′(x) = lnx + 1

Vidimo da je derivacija negativna na intervalu
〈
0, e−1〉, a pozitivna

na intervalu
〈
e−1, ∞

〉
. To znači da funkcija pada na intervalu

〈
0, e−1〉,

a raste na intervalu
〈
e−1, ∞

〉
te je m(e−1, f (e−1)) = m(e−1,−e−1) točka

lokalnog minimumuma na grafu.
Još je dodatno skiciran graf funkcije f te je označena točka m(e−1,−e−1).

Slika 5.4.12: Graf funkcije f (x) = xlnx

Zadatak 56. Odredite intervale rasta, intervale pada i lokalne ekstreme
funkcije f (x) = − 1

2 ln(1 + x2).

Rješenje: Odredimo derivaciju funkcije f :

f ′(x) = −1
2
· 1

1 + x2 · (1 + x2)′ = −1
2
· 1

1 + x2 · 2x =
−x

1 + x2 .

Kako bismo dobili intervale rasta i pada, moramo odrediti predznak
derivacije. Kako je nazivnik pozitivan, predznak ovisi o brojniku, a to
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je linearna funkcija. Stacionarna točka je x = 0. Skicirajmo funkciju
y = −x:

Slika 5.4.13: Graf funkcije f ′(x) = −x

Iz predznaka derivacije vidimo da funkcija f raste na intervalu
〈−∞, 0〉, a pada na intervalu 〈0, ∞〉. Stoga je M(0, f (0)) = M(0, 0)
točka lokalnog maksimuma na grafu.
Ovdje je još za provjeru skiciran graf funkcije f i na njemu označena
točka M(0, 0).

Slika 5.4.14: Graf funkcije f (x) = − 1
2 ln(1 + x2)

Zadatak 57. Odredite intervale rasta, intervale pada i lokalne ekstreme
funkcije f (x) = x

x2−2x+3 .
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Rješenje: Odredimo derivaciju funkcije f :

f ′(x) =
1 · (x2 − 2x + 3)− x(2x− 2)

(x2 − 2x + 3)2

=
x2 − 2x + 3− 2x2 + 2x

(x2 − 2x + 3)2

=
−x2 + 3

(x2 − 2x + 3)2 .

Kako je nazivnik pozitivan, predznak derivacije ovisi o kvadratnoj
funkciji u brojniku. Odredimo joj nultočke i skicirajmo je. Dobivamo

−x2 + 3 = 0

x1 = −
√

3, x2 =
√

3.

Slika 5.4.15: Graf funkcije f ′(x) = −x2 + 3

Iz predznaka derivacije vidimo da funkcija pada na intervalu
〈
−∞,−

√
3
〉
∪〈√

3, ∞
〉

, a raste na intervalu
〈
−
√

3,
√

3
〉

. Stoga je m(−
√

3, f (−
√

3)) =

(−
√

3, 1−
√

3
4 ) točka lokalnog minimuma, a M(

√
3, f (
√

3)) = (
√

3, 1+
√

3
4 )

točka lokalnog maksimuma na grafu.
Ovdje je takod̄er još dodatno skiciran graf funkcije f na kojem mo-
žemo vidjeti eksteme funkcije te lijevu i desnu horizontalnu asimptotu
y = 0.
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Slika 5.4.16: Graf funkcije f (x) = x
x2−2x+3

Zadatak 58. Od pravokutnog kartona duljina stranica 12 i 20 napravite
kutiju bez poklopca maksimalnog volumena.

Rješenje:
Nacrtajmo pravokutnik te s x označimo stranice kvadrata koje ćemo
rezati po jednoj unutarnjoj stranici i savijati za zalijepiti kutiju.

Slika 5.4.17: Rješenje zadatka 58

Volumen kutije iznosi

V(x) = (12− 2x)(20− 2x)x = (240− 24x− 40x + 4x2)x

= 4x3 − 64x2 + 240x.

Odredimo x tako da volumen bude maksimalan tj. nad̄imo maksimum
funkcije V. Nad̄imo derivaciju funkcije V:

V ′(x) = 12x2 − 128x + 240.

Iz V ′(x) = 0 dobivamo x1,2 = 16±2
√

19
3 pa su x1 = 16−2

√
19

3 i x2 =
16+2

√
19

3 stacionarne točke. Domena funkcije V je 〈0, 6〉. Kako je V ′ kva-

dratna funkcija, slijedi da je 〈0, 16−2
√

19
3 〉 interval rasta, a 〈 16−2

√
19

3 , 6〉
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interval pada. Stoga je u točki x1 = 16−2
√

19
3 lokalni maksimum i on

iznosi

V

(
16− 2

√
19

3

)
≈ 262.68.

Točka x2 = 16+2
√

19
3 ne pripada domeni funkcije V.

Zadatak 59. Baza uspravne prizme je jednakostraničan trokut. Oplošje
prizme iznosi 600. Odredite dimenzije prizme tako da volumen bude maksi-
malan.

Rješenje:
Označimo osnovni brid prizme s a, a visinu s v.

Slika 5.4.18: Rješenje zadatka 59

Volumen prizme iznosi

V =
a2
√

3
4
· v,

a oplošje

O = 2 · a2
√

3
4

+ 3av

600 =
a2
√

3
2

+ 3av

iz čega dobivamo

⇒ 3av = 600− a2
√

3
2

⇒ v =
200

a
− a
√

3
6

.
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Uvrstimo v u volumen i dobivamo

V(a) =
a2
√

3
4

(
200

a
− a
√

3
6

)
= 50

√
3a− 1

8
a3.

Za pronaći maksimum funkcije V najprije ju moramo derivirati pa
imamo

V ′(a) = 50
√

3− 3
8

a2.

Stacionarna točke su a1 = − 20 4√27
3 i a2 = 20 4√27

3 . Iz a > 0 i v > 0
dobivamo da je domena funkcije V interval 〈0, 20 4

√
3〉. Na toj domeni

je 〈0, 20 4√27
3 〉 interval rasta, a 〈 20 4√27

3 , 20 4
√

3〉 interval pada, pa se u točki

a2 = 20 4√27
3 postiže maksimum. Maksimum funkcije V jednak je

V
(

20 4√27
3

)
= 2000 4√3

3 . Točka a1 = − 20 4√27
3 ne pripada domeni funkcije

V.

5.5 zadatci za vježbu

Zadatak 60. Izračunajte limese:

1. lim
x→−2

x2−4
x2+2x

Rješenje:
lim

x→−2
x2−4

x2+2x = lim
x→−2

(x−2)���(x+2)
x���(x+2) = −2−2

−2 = 2

2. lim
x→−9

x+9
5−
√

16−x

Rješenje:

lim
x→−9

x + 9
5−
√

16− x
= lim

x→−9

x + 9
5−
√

16− x
· 5 +

√
16− x

5 +
√

16− x
=

lim
x→−9

(x + 9)(5 +
√

16− x)

52 −
√

16− x
2 = lim

x→−9

����(x + 9)(5 +
√

16− x)
���9 + x

= 5 +
√

16 + 9 = 10

3. lim
x→0

tg 2x2

x2

Rješenje:

lim
x→0

tg 2x2

x2 = lim
x→0

sin 2x2

cos 2x2

x2 = lim
x→0

sin 2x2

x2 · 1
cos 2x2

= lim
x→0

2 sin 2x2

2x2 · lim
x→0

1
cos 2x2 = 2
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4. lim
t→0

cos (x+t)−cos x
t

Rješenje:

lim
t→0

cos (x + t)− cos x
t

= lim
t→0

−2 sin x+t+x
2 sin x+t−x

2
t

= lim
t→0

−2 sin 2x+t
2 sin t

2
t

= lim
t→0
−

sin t
2

t
2
· sin

2x + t
2

= − sin x.

Zadatak 61. Po definiciji izračunajte derivacije funkcija:

1. f (x) = ctg x
Rješenje:

f ′(x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x

= lim
∆x→0

ctg(x + ∆x)− ctg(x)
∆x

= lim
∆x→0

cos(x+∆x)
sin(x+∆x) −

cos x
sin x

∆x

= lim
∆x→0

cos(x+∆x) sin x−cos x sin(x+∆x)
sin(x+∆x) sin x

∆x

= lim
∆x→0

sin(x− x− ∆x)
∆x sin(x + ∆x) sin x

= lim
∆x→0

− sin ∆x
∆x sin(x + ∆x) sin x

= − 1
sin2 x

2. f (x) = 2x3

Rješenje:

f ′(x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x

= lim
∆x→0

2(x + ∆x)3 − 2x3

∆x

= 2 lim
∆x→0

��x3 + 3x2∆x + 3x(∆x)2 + (∆x)3 −��x3

∆x

= 2 lim
∆x→0

��∆x
[
3x2 + 3x∆x + (∆x)2]

��∆x
= 6x2
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3. f (x) = 3√
x

Rješenje:

f ′(x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x

= lim
∆x→0

3√
x+∆x

− 3√
x

∆x

= 3 lim
∆x→0

√
x−
√

x + ∆x
∆x
√

x + ∆x
√

x
·
√

x +
√

x + ∆x
√

x +
√

x + ∆x

= 3 lim
∆x→0

�
��√x�2 −������√

x + ∆x�
2

∆x
√

x + ∆x
√

x(
√

x +
√

x + ∆x)

= 3 lim
∆x→0

−��∆x
��∆x
√

x + ∆x
√

x(
√

x +
√

x + ∆x)

=
−3√

x
√

x · 2
√

x
=
−3

2x
√

x
.

Zadatak 62. Izračunajte derivacije funkcija:

1. f (x) = tg 2+x2

2−x2

Rješenje:

f ′(x) =
1

cos2 2+x2

2−x2

·
(

2 + x2

2− x2

)′
=

1

cos2 2+x2

2−x2

2x(2− x2)− (2 + x2)(−2x)
(2− x2)2

=
1

cos2 2+x2

2−x2

4x−��2x3 + 4x +��2x3

(2− x2)2

=
1

cos2 2+x2

2−x2

8x
(2− x2)2

2. f (x) = xe−x

x2+1
Rješenje:

f ′(x) =
(xe−x)′(x2 + 1)− (xe−x)(x2 + 1)′

(x2 + 1)2

=
(e−x − xe−x)(x2 + 1)− xe−x2x

(x2 + 1)2

=
e−x [(1− x)(x2 + 1)− 2x2]

(x2 + 1)2

=
e−x(x2 + 1− x3 − x− 2x2)

(x2 + 1)2

=
e−x(−x3 − x2 − x + 1)

(x2 + 1)2 .
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Zadatak 63. Odredite jednadžbu tangente na graf funkcije f (x) = x3 −
3x + 2 u točki T(2, y0).
Rješenje:

y0 = f (2) = 23 − 6 + 2 = 4

f ′(x) = 3x2 − 3

k = f ′(2) = 3 · 22 − 3 = 9

t · · · y− y0 = k(x− x0)

t · · · y− 4 = 9(x− 2)

t · · · y = 9x− 14.





6
I N T E G R A L I

6.1 neodreðeni integral

U ovom poglavlju proučavamo sljedeći problem: ako je zadana funk-
cija f , trebamo naći funkciju čija je derivacija jednaka f . Takvu funkciju
F za koju vrijedi

F′(x) = f (x), za svaki x ∈ 〈a, b〉

zovemo primitivna funkcija funkcije f na intervalu 〈a, b〉
Neka je F primitivna funkcija funkcije f na intervalu
〈a, b〉 i c ∈ R. Tada je

[F(x) + c]′ = F′(x) + c′ = F′(x) = f (x), za svaki x ∈ 〈a, b〉

pa slijedi da je i F + c primitivna funkcija funkcije f na intervalu 〈a, b〉,
tj. primitivna funkcija je skup koji se sastoji od beskonačno mnogo
funkcija koje se razlikuju za konstantu. Skup

{F + c : c ∈ R}

zovemo neodred̄eni integral funkcije f i pišemo∫
f (x)dx = F(x) + c.

Funkciju f nazivamo podintegralna funkcija.

Primjer 13. Primitivna funkcija funkcije f (x) = x je funkcija F(x) =
1
2 x2 + c jer je

F′(x) =
(

1
2

x2 + c
)′

=
1
2
· 2x + c′ = x = f (x).

Svojstva neodred̄enog integrala:∫
f ′(x)dx = f (x) + c

∫
α f (x)dx = α

∫
f (x)dx, α ∈ R

137
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∫
[ f (x) + g(x)] dx =

∫
f (x)dx +

∫
g(x)dx.

Integrali elementarnih funkcija:∫
xndx =

xn+1

n + 1
+ c, n 6= −1∫ 1

x
dx = ln|x|+ c, x 6= 0∫

axdx =
ax

lna
+ c∫

ex = ex + c∫
sinxdx = −cosx + c∫
cosxdx = sinx + c∫ 1
cos2xdx

= tgx + c∫ 1
sin2xdx

= −ctgx + c.

Zadatak 64. Izračunajte neodred̄ene integrale:

1.
∫

5(x4 − 3x2 − 1)dx

Rješenje:∫
5(x4 − 3x2 − 1)dx = 5

∫
x4dx− 15

∫
x2dx− 5

∫
dx

= 5
x4+1

4 + 1
− 15

x2+1

2 + 1
− 5

x0+1

0 + 1
+ c = �5

x5

�5
− 15

x3

3
− 5x + c

= x5 − 5x3 − 5x + c

2.
∫
( 2

3 x3 + 3x
1
2 − 1

2 )dx

Rješenje:∫
(

2
3

x3 + 3x
1
2 − 1

2
)dx =

2
3

∫
x3dx + 3

∫
x

1
2 dx− 1

2

∫
dx

=
�2
3

x4

�4
+ 3

x
3
2

3
2

− 1
2

x + c =
x4

6
+ 2x

3
2 − 1

2
x + c

3.
∫ 5(x−1)√

x dx

Rješenje: ∫ 5(x− 1)√
x

dx = 5
∫ ( x√

x
− 1√

x

)
dx

= 5
∫

x1− 1
2 dx− 5

∫
x−

1
2 dx = 5

∫
x

1
2 dx− 5

∫
x−

1
2 dx

= 5
x

3
2

3
2

− 5
x

1
2

1
2

+ c =
10
3

x
3
2 − 10x

1
2 + c
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4.
∫
( 2

x4 +
√

x3 + 2
x )dx

Rješenje:∫
(

2
x4 +

√
x3 +

2
x
)dx = 2

∫
x−4dx +

∫
x

3
2 dx + 2

∫ 1
x

dx

= 2
x−3

−3
+

x
5
2

5
2

+ 2ln|x|+ c = − 2
3x3 +

2
5

x
5
2 + 2ln|x|+ c

6.2 metoda supstitucije

Neka je zadan integral ∫
f (x)dx.

Pretpostavimo da f (x) možemo zapisati u obliku

f (x) = v (u(x)) u′(x)

te pretpostavimo da možemo pronaći primitivnu funkciju V od v, tj.
V ′ = v. Po pravilu za derivaciju složene funkcije imamo

[V (u(x))]′ = V ′ (u(x)) u′(x) = v (u(x)) u′(x) = f (x),

tj. složena funkcija V ◦ u je primitivna funkcija funkcije f . Slijedi da je∫
f (x)dx = (V ◦ u) (x) + c = V (u(x)) + c.

Na ovoj jednakosti zasniva se metoda supstitucije.

Primjer 14. Izračunajte neodred̄eni integral:∫ 4x2

x3 + 5
dx.

Rješenje:
Odaberimo u(x) = x3 + 5 i v(x) = 4

3x . Derivacija funkcije u(x) je
u′(x) = 3x2. Primitivna funkcija funkcije v(x) = 4

3x je V(x) = 4
3 ln |x|.

Tada je
4x2

x3 + 5
=

4
3(x3 + 5)

(x3 + 5)′ = v(u(x))u′(x).

Sad je ∫ 4x2

x3 + 5
dx =

4
3

ln |x3 + 5|+ c.

Ovaj postupak ćemo jednostavnije zapisivati na sljedeći način

∫ 4x2

x3 + 5
dx =


u(x) = x3 + 5
du
dx = 3x2

du = 3x2dx ⇒ x2dx = 1
3 du


=

4
3

∫ 1
u

du =
4
3

ln |u|+ c =
4
3

ln |x3 + 5|+ c.
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Zadatak 65. Izračunajte neodred̄ene integrale:

1.
∫ √

4x− 5dx

Rješenje:

∫ √
4x− 5dx =

{
u(x) = 4x− 5
du = 4dx ⇒ dx = 1

4 du

}
=

1
4

∫ √
udu =

1
4

u
3
2

3
2

+ c =
1
6

√
(4x− 5)3 + c

2.
∫
(−2x + 3)7dx

Rješenje:

∫
(−2x + 3)7dx =

{
u(x) = −2x + 3
du = −2dx ⇒ dx = − 1

2 du

}
= −1

2

∫
u7du = −1

2
u8

8
+ c = − 1

16
(−2x + 3)8 + c

3.
∫

x4
√

2x5 − 1dx

Rješenje:

∫
x4
√

2x5 − 1dx =

{
u(x) = 2x5 − 1
du = 10x4dx ⇒ x4dx = 1

10 du

}
=

1
10

∫ √
udu =

1
10

u
3
2

3
2

+ c =
1
15

√
(2x5 − 1)3 + c

4.
∫ 2x2

3x3+1 dx

Rješenje:

∫ 2x2

3x3 + 1
dx =

{
u(x) = 3x3 + 1
du = 9x2dx ⇒ x2dx = 1

9 du

}
=

2
9

∫ du
u

=
2
9

ln |u|+ c =
2
9

ln |3x3 + 1|+ c

5.
∫

sin(−4x + 1)dx

Rješenje:

∫
sin(−4x + 1)dx =

{
u(x) = −4x + 1
du = −4dx ⇒ dx = − 1

4 du

}
= −1

4

∫
sin udu =

1
4

cos u + c =
1
4

cos(−4x + 1) + c
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6.
∫

sin2 xdx

Rješenje:

∫
sin2 xdx =

∫ 1− cos 2x
2

dx

=
1
2

∫
dx− 1

2

∫
cos 2xdx =

{
u(x) = 2x
du = 2dx ⇒ dx = 1

2 du

}
=

1
2

x + c− 1
4

∫
cos udu =

1
2

x− 1
4

sin u + c

=
1
2

x− 1
4

sin 2x + c

7.
∫

tgxdx

Rješenje:

∫
tg xdx =

∫ sin x
cos x

dx

=

{
u(x) = cos x
du = − sin xdx ⇒ sin xdx = −du

}
= −

∫ 1
u

du = − ln |u|+ c = − ln | cos x|+ c.

6.3 odreðeni integral

Definicija 24: Za realnu funkciju f kažemo da je omed̄ena ako postoje
realni brojevi m i M za koje vrijedi m ≤ f (x) ≤ M za svaki x na
području definicije.

Definicija 25: Konačan skup točaka D = {x0, x1, . . . , xn} sa svojstvom
da je

a = x0 < x1 < x2 < · · · < xn = b.

nazivamo razdioba ili particija segmenta [a, b]. Za particiju D′ kažemo
da je profinjenje particije D ako je D′ ⊆ D.

Definicija 26: Neka je A ⊆ R. Kažemo da je M ∈ R supremum skupa
A, oznaka sup A ako je M gornja med̄a skupa A tj. a ≤ M za svaki
a ∈ A i M je najmanja gornja med̄a.
Kažemo da je m ∈ R infimum skupa A, oznaka inf A ako je m donja
med̄a skupa A tj. a ≥ m za svaki a ∈ A i m je najveća donja med̄a.

Uzmimo omed̄enu funkciju f : [a, b]→ R. Željeli bismo izračunati
površinu P omed̄enu grafom funkcije f , pravcima x = a, x = b i osi x.
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Slika 6.3.1: Površina omed̄ena grafom funkcije f , pravcima x = a, x = b i osi
x

Kako je funkcija f zakrivljena, mi ovu površinu ne možemo prekriti
pravokutnicima, ali u nju možemo upisivati pravokutnike ili ju prekriti
opisanim pravokutnicima. Zbroj površina upisanih pravokutnika nazi-
vamo donja integralna suma, a zbroj površina opisanih pravokutnika
gornja integralna suma. Na sljedećim slikama vidimo da je tražena
površina izmed̄u zbroja upisanih i zbroja opisanih pravokutnika. Ta-
kod̄er, možemo uočiti da se uzimajući sve sitniju particiju segmenta
[a, b], zbroj površina upisanih pravokutnika povećava ili ostaje isti, a
zbroj površina opisanih pravokutnika smanjuje ili ostaje isti i sve se
više približavaju traženoj površini.

Slika 6.3.2: Donja i gornja integralna suma
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Slika 6.3.3: Donja i gornja integralna suma

Za definirati odred̄eni integral uzmimo najprije neku particiju D
segmenta [a, b] tj. konačan skup točaka D = {x0, x1, . . . , xn} sa svoj-
stvom da je a = x0 < x1 < · · · < xn = b. Kako je funkcija f omed̄ena,
na svakom podsegmentu [xi−1, xi], i = 1, . . . , n postoje nenegativni
brojevi mi, Mi takvi da je

mi = inf
x∈[xi−1,xi ]

f (x), Mi = sup
x∈[xi−1,xi ]

f (x), i = 1, . . . , n.

Ako s P označimo površinu ispod grafa funkcije, vrijedi

n

∑
i=1

mi(xi − xi−1) ≤ P ≤
n

∑
i=1

Mi(xi − xi−1). (11)

Što je n veći, donja ograda aproksimacije (11) će rasti, a gornja padati.
Definirajmo

s( f , P) =
n

∑
i=1

mi(xi − xi−1),

S( f , P) =
n

∑
i=1

Mi(xi − xi−1).

Brojeve s( f , P) i S( f , P) nazivamo donja, odnosno gornja Darbo-
uxova suma.

Definicija 27: Donji Riemanov integral funkcije f na [a, b] definira se
kao ∫

−
f = sup {s( f , P) : P particija od [a, b]} .

Gornji Riemanov integral funkcije f na [a, b] definira se kao∫ −
f = inf {S( f , P) : P particija od [a, b]} .



144 integrali

Definicija 28: Za omed̄enu funkciju f : [a, b] → R kažemo da je R-
integrabilna ako je

∫
− f =

∫ − f . Taj broj tada nazivamo Riemanov
integral ili odred̄eni integral funkcije f na segmentu [a, b] i označa-
vamo ∫ b

a
f (x)dx.

Brojeve a i b zovemo donja, odnosno gornja granica integracije.

Svojstva odred̄enog integrala:

1.
∫ a

a f (x)dx = 0,

2.
∫ b

a f (x)dx = −
∫ a

b f (x)dx,

3.
∫ b

a c f (x)dx = c
∫ b

a f (x)dx, c je konstanta,

4.
∫ b

a [ f (x)± g(x)]dx =
∫ b

a f (x)dx±
∫ b

a g(x)dx,

5.
∫ b

a f (x)dx =
∫ c

a f (x)dx +
∫ b

c f (x)dx, ∀c ∈< a, b >,

6.
∫ b

a f (x)dx ≥ 0 ako je f (x) ≥ 0, ∀x ∈ [a, b].

Za računanje odred̄enog integrala koristit ćemo sljedeći teorem bez
dokaza:

Teorem 4. (Newton-Leibnitzova formula)
Neka je f neprekidna funkcija na [a, b] i F primitivna funkcija od f . Tada

vrijedi ∫ b

a
f (x)dx = F(x)

∣∣∣b
a
= F(b)− F(a).

Dakle, možemo reći da odred̄eni integral računamo kao razliku
vrijednosti primitivne funkcije u gornjoj i donjoj granici promatranog
integrala.

Zadatak 66. Izračunajte odred̄ene integrale:

1.
∫ 3

1
x2

3 dx

Rješenje:

∫ 3

1

x2

3
dx =

1
3
· x3

3

∣∣∣3
1
=

1
9
(33 − 13) =

26
9
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2.
∫ 2

0
3x2−2x√

x dx

Rješenje:

∫ 2

0

3x2 − 2x√
x

dx = 3
∫ 2

0
x2− 1

2 dx− 2
∫ 2

0
x1− 1

2 dx

= 3
∫ 2

0
x

3
2 dx− 2

∫ 2

0
x

1
2 dx = 3

x
5
2

5
2

∣∣∣2
0
− 2

x
3
2

3
2

∣∣∣2
0

=
6
5
(2

5
2 − 0

5
2 )− 4

3
(2

3
2 − 0

3
2 ) =

6
5

√
25 − 4

3

√
23

=
6
5
· 4
√

2− 4
3
· 2
√

2 =
24
5

√
2− 8

3

√
2

=
72
√

2− 40
√

2
15

=
32
√

2
15

3.
∫ π

3
π
6

cos(2x + π
3 )dx

Rješenje:

∫ π
3

π
6

cos(2x +
π

3
)dx =

{
u(x) = 2x + π

3
du = 2dx

}
=

1
2

∫ π

2π
3

cos udu =
1
2

sin u
∣∣∣π

2π
3

=
1
2

(
sin π − sin

2π

3

)
= −

√
3

4

4.
∫ 2

0
5

2x+3 dx

Rješenje:

∫ 2

0

5
2x + 3

dx =

{
u(x) = 2x + 3
du = 2dx ⇒ dx = 1

2 du

}
=

5
2

∫ 7

3

1
u

du =
5
2

ln|u|
∣∣∣7
3
=

5
2
(ln7− ln3)

5.
∫ 3

1

√
3x + 1dx

Rješenje:

∫ 3

1

√
3x + 1dx =

{
u(x) = 3x + 1
du = 3dx ⇒ dx = 1

3 du

}
=

1
3

∫ 10

4

√
udu =

1
3

u
3
2

3
2

∣∣∣10

4
=

2
9
(
√

103 −
√

43)

=
2
9
(10
√

10− 8) =
4
9
(5
√

10− 4).
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6.4 površine ravninskih likova

Promatramo funkcije f , g : [a, b]→ R i njihove grafove. Željeli bismo
izračunati površinu ravninskog lika omed̄enog grafovima funkcija f i
g te pravcima x = a i x = b kao što je prikazano na slici 6.4.1.

Slika 6.4.1: Površina ravninskog lika

Kako računanjem
∫ b

a f (x)dx dobivamo površinu ispod grafa funkcije

f na segmentu [a, b], a računanjem
∫ b

a g(x)dx površinu ispod grafa
funkcije g na segmentu [a, b], onda je tražena površina jednaka

P =
∫ b

a
f (x)dx−

∫ b

a
g(x)dx,

a to je

P =
∫ b

a
( f − g)(x)dx.

Zadatak 67. Odredite površinu lika u ravnini koji je omed̄en parabolom
y = x2 + x− 12 i pravcem y = x− 2.

Rješenje: Nacrtajmo pravac i parabolu i označimo traženu površinu.
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Slika 6.4.2: Rješenje zadatka 67

Kako bismo odredili granice integracije, moramo pronaći točke
presjeka pravca i parabole:
x2 + x− 12 = x− 2
x2 − 10 = 0
(x−

√
10)(x +

√
10) = 0

x1,2 = ±
√

10.
Sad računamo traženu površinu:

P =
∫ √10

−
√

10

[
(x− 2)−

(
x2 + x− 12

)]
dx

=
∫ √10

−
√

10

(
−x2 + 10

)
dx =

(
− x3

3
+ 10x

)∣∣∣∣∣
√

10

−
√

10

= −
√

10
3

3
+ 10
√

10−
(
− (−

√
10)3

3
+ 10(−

√
10)

)
=

40
√

10
3

.

Zadatak 68. Odredite površinu lika omed̄enog parabolom
y = −x2 − 2x + 3 i pravcem y = −x.
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Rješenje: Nacrtajmo pravac i parabolu i označimo traženu površinu.

Slika 6.4.3: Rješenje zadatka 68

Kako bismo odredili granice integracije, moramo pronaći točke
presjeka pravca i parabole:
−x2 − 2x + 3 = −x
−x2 − x + 3 = 0
x1,2 = 1±

√
13

−2 .
Sad računamo traženu površinu:

P =
∫ 1−

√
13

−2

1+
√

13
−2

[(
−x2 − 2x + 3

)
− (−x)

]
dx

=
∫ 1−

√
13

−2

1+
√

13
−2

(
−x2 − x + 3

)
dx =

(
− x3

3
− x2

2
+ 3x

)∣∣∣∣∣
1−
√

13
−2

1+
√

13
−2

=
(1−

√
13)3

24
− (1−

√
13)2

8
− 3(1−

√
13)

2

−
[
(1 +

√
13)3

24
− (1 +

√
13)2

8
− 3(1 +

√
13)

2

]

= −32
√

13
24

+
4
√

13
8

+ 3
√

13 =
13
√

13
6

.



6.4 površine ravninskih likova 149

Zadatak 69. Odredite površinu lika sa slike 6.4.4.

Slika 6.4.4: Zadani elementi zadatka 69

Rješenje:

P =
∫ 2

0
(x2 − 0)dx =

x3

3

∣∣∣∣∣
2

0

=
8
3

Zadatak 70. Odredite površinu lika omed̄enog parabolama
y = −x2 + 6x i y = x2 − 2x.
Rješenje:
Nacrtajmo zadane parabole i označimo traženu površinu.
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Slika 6.4.5: Rješenje zadatka 70

Kako bismo odredili granice integracije, moramo pronaći točke pre-
sjeka parabola:

−x2 + 6x = x2 − 2x

−2x2 + 8x = 0

−2x(x− 4) = 0

x1 = 0, x2 = 4

P =
∫ 4

0
[(−x2 + 6x)− (x2 − 2x)]dx =

∫ 4

0
(−2x2 + 8x)dx

=

(
−2x3

3
+

8x2

2

)∣∣∣∣∣
4

0

= −128
3

+ 64 =
64
3

.

Zadatak 71. Odredite površinu lika sa slike 6.4.6.
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Slika 6.4.6: Zadani elementi zadatka 71

Rješenje:
Kako bismo odredili granice integracije, moramo riješiti jednadžbu

cosx =
1
2

, x ∈ [0, π] =⇒ x =
π

3
.

P =
∫ π

3

0
(cosx− 1

2
)dx =

(
sinx− 1

2
x
)∣∣∣∣∣

π
3

0

= sin
π

3
− π

6
− (sin0− 0) =

√
3

2
− π

6
.

Zadatak 72. Odredite površinu lika sa slike 6.4.7.

Slika 6.4.7: Zadani elementi zadatka 72
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Rješenje:

P =
∫ 3

1
e

1
2 xdx =

{
u(x) = 1

2 x
du = 1

2 dx ⇒ dx = 2du

}

= 2
∫ 3

2

1
2

eudu = 2eu

∣∣∣∣∣
3
2

1
2

= 2(e
√

e−
√

e) = 2
√

e(e− 1).

Zadatak 73. Odredite površinu lika omed̄enog parabolama y = x2 − 5x i
y = −x2 + 9x− 18.

Rješenje: P = 15.62.

6.5 volumeni rotacijskih tijela

Uzmimo neprekidnu funkciju f : [a, b]→ R. Rotacijom luka krivulje
y = f (x) oko osi x na segmentu [a, b] dobivamo rotacijsko tijelo.
Presjek rotacijskog tijela ravninom okomitom na os x krug je radijusa
r(x) čija je površina P(x) = πr2(x), gdje je r(x) = | f (x)|.

Slika 6.5.1: Volumen rotacijskog tijela

Zamislimo da volumen rotacijskog tijela dobivamo zbrajanjem po-
vršina beskonačno mnogo krugova. Analogan zbrajanju beskonačno
površina bilo bi integriranje površina po varijabli x, pa dobivamo
formulu

V = π
∫ b

a
r2(x)dx.
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Na sličan način dobiva se volumen rotacijskog tijela koje nastaje ro-
tacijom krivulje oko osi y ili bilo kojeg pravca što ćemo pokazati u
zadatcima na kraju ove cjeline.
Više o volumenu rotacijskog tijela može se pronaći u knjigama [1] i
[11].

Primjer 15. Odredite volumen tijela koji nastaje rotacijom lika sa slike oko
osi x.

Slika 6.5.2: Zadani elementi primjera 15

Rješenje: Skicirajmo rotacijsko tijelo:

Slika 6.5.3: Rješenje primjera 15
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Primijenimo formulu za volumen rotacijskog tijela koje nastaje rota-
cijom pravca y = 1

2 x na segmentu od 0 do 5.

V = π
∫ 5

0

(
1
2

x
)2

dx =
1
4

π
∫ 5

0
x2dx

=
1
4

π · x3

3

∣∣∣∣∣
5

0

=
π

12
(
53 − 03) = 125π

12
.

Riješimo sad gornji zadatak standardnom formulom za volumen stošca

V =
1
3

r2πv.

Radijus osnovice stošca jednak je y koordinati sjecišta pravaca y = 1
2 x

i x = 5 tj. r = 5
2 . Visina stošca je v = 5. Sad dobivamo

V =
1
3
·
(

5
2

)2

· π · 5 =
125π

12
.

Primijetimo da gornje rješenje odgovara rješenju koje smo dobili upo-
trebom integralne formule za volumen.

Primjer 16. Odredite volumen tijela koji nastaje rotacijom lika sa slike oko
osi x.

Slika 6.5.4: Zadani elementi primjera 16

Rješenje: Skicirajmo rotacijsko tijelo:
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Slika 6.5.5: Rješenje primjera 16

Primijenimo formulu za volumen rotacijskog tijela koje nastaje rota-
cijom pravca y = 2 na segmentu od 0 do 5.

V = π
∫ 5

0
22dx = 4π

∫ 5

0
dx

= 4π · x
∣∣∣∣∣
5

0

= 4π (5− 0) = 20π.

Riješimo sad gornji zadatak standardnom formulom za volumen valjka

V = r2πv.

Radijus osnovice valjka iznosi r = 2, a visina v = 5. Sad dobivamo

V = 22π · 5 = 20π.

Primijetimo da gornje rješenje odgovara rješenju koje smo dobili upo-
trebom integralne formule za volumen.

Zadatak 74. Odredite volumen tijela koje nastaje rotacijom lika sa slike 6.5.6
oko x-osi.

Slika 6.5.6: Zadani elementi zadatka 74
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Rješenje:

Slika 6.5.7: Rješenje zadatka 74

Najprije napišimo jednadžbu pravca p koji prolazi kroz ishodište
i točku T( 2π

3 ,
√

3
2 ). Traženi pravac je y = 3

√
3

4π x. Kako bismo dobili
volumen traženog rotacijskog tijela, moramo od volumena tijela koje
nastaje rotacijom grafa funkcije f (x) = sinx oduzeti volumen stošca.
Sad imamo da je volumen tijela

V1 = π
∫ 2π

3

0
sin2xdx = π

∫ 2π
3

0

1− cos2x
2

dx

=
π

2

(
x− 1

2
sin2x

)∣∣∣∣∣
2π
3

0

=
π

2
x− π

4
sin2x

∣∣∣∣∣
2π
3

0

=
π

2
· 2π

3
− π

4
sin

4π

3
=

π2

3
+

π
√

3
8

,

a volumen stošca radijusa baze
√

3
2 i visine 2π

3

V2 =
1
3

r2πv =
1
3

(√
3

2

)2

π
2π

3
=

π2

6
,

V = V1 −V2 =
π2

6
+

π
√

3
8

.

Zadatak 75. Odredite volumen tijela koje nastaje rotacijom oko x-osi lika
omed̄enog parabolom y = x2 − 2 i pravcem y = −1.

Rješenje: Skicirajmo najprije površinu omed̄enu zadanim funkci-
jama.
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Slika 6.5.8: Zadani elementi zadatka 75

Da bismo odredili granice integracije, moramo naći presjek pravca i
parabole:

x2 − 2 = −1

x2 = 1

x1,2 = ±1.

Skicirajmo traženo rotacijsko tijelo.

Slika 6.5.9: Rješenje zadatka 75

Kako bismo dobili volumen traženog rotacijskog tijela, moramo od
volumena tijela koje nastaje rotacijom grafa funkcije y = x2− 2 oduzeti
volumen valjka. Sad imamo da je

V1 = π
∫ 1

−1
(x2 − 2)2dx = π

∫ 1

−1
(x4 − 4x2 + 4)dx

= π

(
x5

5
− 4x3

3
+ 4x

)∣∣∣∣∣
1

−1

= π

(
1
5
− 4

3
+ 4
)
− π

(
−1

5
+

4
3
− 4
)

= π

(
2
5
− 8

3
+ 8
)
=

86
15

π,
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V2 = r2πv = 12π2 = 2π,

V = V1 −V2 =
86
15

π − 2π =
56
15

π.

Zadatak 76. Odredite volumen tijela koje nastaje rotacijom oko x-osi lika
omed̄enog parabolom y = −x2 + 9 i pravcem y = x + 3.

Rješenje:

Slika 6.5.10: Zadani elementi zadatka 76

−x2 + 9 = x + 3

x1 = −3, x2 = 2

Slika 6.5.11: Rješenje zadatka 76
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V1 = π
∫ 2

−3
(−x2 + 9)2dx = π

∫ 2

−3
(x4 − 18x2 + 81)dx

= π

(
x5

5
− 6x3 + 81x

)∣∣∣∣∣
2

−3

= π

(
32
5
− 48 + 162

)
− π

(
−243

5
+ 162− 243

)
= 250π,

V2 =
1
3

r2πv =
1
3

52π5 =
125

3
π,

V = V1 −V2 =
625
3

π.

Zadatak 77. Odredite volumen tijela koje nastaje rotacijom lika sa slike
6.5.12 oko y-osi.

Slika 6.5.12: Zadani elementi zadatka 77

Rješenje: Najprije napišimo jednadžbu parabole:

y = ax2 + c

4 = 0 + c⇒ c = 4

y = ax2 + 4

0 = 4a + 4⇒ a = −1

⇒ y = −x2 + 4.
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Napišimo jednadžbu pravca (tangente parabole u točki T(−2, 0)):

y′ = −2x ⇒ k = 4,

y− 0 = 4(x + 2)⇒ y = 4x + 8.

Slika 6.5.13: Rješenje zadatka 77

Kako smo sad radili rotaciju oko osi y, radijus rotacijskog tijela ćemo
izraziti kao funkciju u varijabli y:

y = −x2 + 4⇒ x = ±
√

4− y

tj. r(y) =
√

4− y.

V1 =
1
3

r2πv =
1
3

22π8 =
32
3

π,

V2 = π
∫ 4

0
[r(y)]2dy = π

∫ 4

0

√
4− y

2
dy = π

∫ 4

0
(4− y)dy

= π

(
4y− y2

2

)∣∣∣∣∣
4

0

= π (16− 8) = 8π,

V = V1 −V2 =
32
3

π − 8π =
8
3

π.
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arkus kosinus, 98

arkus kotangens, 99

arkus sinus, 97

arkus tangens, 98

asimptota funkcije, 120

baza, 26

bijekcija, 85

Cauchyjeva definicija limesa,
103

ciklometrijske funkcije, 97

dekadski logaritam, 91

derivacija funkcije, 110

derivacija funkcije u točki, 110

desni koordinatni sustav, 45

determinanta, 50

domena, 85

donja Darbouxova suma, 143

donja integralna suma, 142

donji Riemanov integral, 143

eksponencijalna funkcija, 89

eksponencijalno preslikavanje,
92

ekstenzija ili proširenje
funkcije, 86

funkcija ili preslikavanje, 85

gornja Darbouxova suma, 143

gornja integralna suma, 142

gornji Riemanov integral, 143

graf funkcije, 85

horizontalna asimptota, 120

infimum, 141

injekcija, 85

inverzna funkcija, 85

jedinični vektor, 17

jednadžba pravca, 59

jednadžba ravnine, 57

kanonski oblik jednažbe
pravca, 60

karakterizacija okomitosti, 33

kodomena, 85

kolinearni vektori, 9

komplanarni vektori, 13

kompozicija funkcija, 85

konstanta, 87

koordinatni sustav, 27

kosa asimptota, 120

kosinus, 93

kotangens, 94

kritična točka, 119

kut izmed̄u vektora, 32

kvadratna funkcija, 88

L’Hospitalovo pravilo, 117

Laplaceov razvoj determinante,
51

lijevi koordinatni sustav, 46

limes funkcije, 104

limes s desna, 105

limes s lijeva, 104

linearna funkcija, 87

linearna kombinacija vektora,
20

logaritamska funkcija, 90

lokalni maksimum, 118

lokalni minimum, 118

metoda supstitucije, 139

mješoviti produkt vektora, 54

množenje vektora i skalara, 17

modul ili norma vektora, 9

neodred̄eni integral, 137

neodred̄eni oblici, 106

neparna funkcija, 86

161
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neprekidna funkcija, 104

Newton Leibnitzova formula,
144

normala ravnine, 57

nulvektor, 12

okolina točke, 103

omed̄ena funkcija, 141

opća potencija, 91

opći oblik jednadžbe ravnine,
58

ortogonalna baza, 41

ortogonalni vektori, 41

ortonormirana baza, 41

padajuća funkcija, 86, 118

parametarski oblik jednadžbe
pravca, 60

parna funkcija, 86

particija segmenta, 141

period funkcije, 86

periodična funkcija, 86

podintegralna funkcija, 137

polinom, 87

površina ravninskog lika, 146

pravokutne koordinate, 41

pravokutni koordinatni sustav,
41

primitivna funkcija, 137

prirodni logaritam, 91

profinjenje particije, 141

racionalna funkcija, 89

radijvektor, 28

rastuća funkcija, 86, 118

realna matrica, 49

restrikcija ili suženje funkcije,
86

Riemanov integral, 144

rotacijsko tijelo, 152

sekanta, 109

sinus, 93

skalarna projekcija, 39

skalarni produkt, 32

slika funkcije, 85

stacionarna točka, 119

supremum, 141

surjekcija, 85

tangens, 94

tangenta, 110

vektor, 9

vektorska projekcija, 39

vektorski produkt, 46

vertikalna asimptota, 120

volumen rotacijskog tijela, 152

zbrajanje vektora, 14

zlatni rez, 44
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[3] Babić, Ivanka; Horvatić-Baldasar, Ksenija. 1997. Nacrtna geometrija,
Sand d.o.o., Zagreb.
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